[email protected]

农业与食品科学

Journal of Agriculture and Food Science

您当前位置:首页 > 精选文章

Journal of Agriculture and Food Science. 2021; 1: (1) ; 10.12208/j.jafs. 20210001 .

A novel method for encapsulating vitamin B12 within ferritin nanocages
一种以铁蛋白为载体包埋维生素B12的新方法

作者: 孙明炀, 郑嘉怡, 张胜鑫, 吕晨艳 *

中国农业大学 北京

*通讯作者: 吕晨艳,单位:中国农业大学 北京;

引用本文: 孙明炀, 郑嘉怡, 张胜鑫, 吕晨艳 一种以铁蛋白为载体包埋维生素B12的新方法[J]. 农业与食品科学, 2021; 1: (1) : 1-6.
Published: 2021/11/18 11:55:51

摘要

目的 本研究以铁蛋白为纳米载体,对维生素B12进行包埋。调控铁蛋白的亚基解离与组装以实现维生素B12的装载,表征包埋体系并定量测出其在铁蛋白中的包埋量,从而构建铁蛋白-维生素B12包埋体系。方法 人重链铁蛋白(human heavy chainferritin,HuHF)通过大肠杆菌表达,离子层析纯化。利用8 M尿素变性HuHF,梯度复性,以361 nm下的紫外吸收表征包埋是否成功,以高效液相色谱(High performance liquid chromatography, HPLC)定量。结果 研究表明维生素B12成功被包埋在铁蛋白纳米笼内。HPLC定量分析表明,每个铁蛋白分子约包埋21.7个维生素B12分子。结论 本研究建立了一种高浓度尿素变性铁蛋白后梯度复性的方法,构建了以铁蛋白为载体对维生素B12包埋体系,为其在递送、缓释方面的应用提供参考。

关键词: 铁蛋白;维生素B12;包埋;尿素

Abstract

Objective: In this study, vitamin B12 was encapsulated within ferritin as nano carrier. Regulate the disassembly and assembly of ferritin subunits to realize the encapsulation of vitamin B12, qualitatively characterize the encapsulation system, and quantitatively measure the encapsulation amount of the vitamin B12 in ferritin, so as to construct the ferritin vitamin B12 encapsulation system.
Methods: Human H-chain ferritin (HuHF) was expressed in E. coli and purified by ion chromatography. HuHF was denatured with 8 M urea, and gradient renaturation, UV absorption at 361 nm was detected to characterize whether the encapsulation was successful, and it was quantified by high performance liquid chromatography (HPLC).
Results: Studies have shown that vitamin B12 was successfully encapsulated in the ferritin nanocages. HPLC quantitative analysis indicated that each ferritin molecule contained approximately 21.7 vitamin B12 molecules.
Conclusion  s: This study established a high-concentration urea-denatured ferritin and gradient renaturation method, and constructed a vitamin B12 encapsulation system with ferritin as a carrier, which provides a reference for its application in delivery.

Key words: Ferritin; Vitamin B12; Encapsulation; Urea

参考文献 References

[1] Tomohiro, Bito, Noriharu, et al. Production and characterization of cyanocobalamin-enriched lettuce (Lactuca sativa L.) grown using hydroponics[J]. Journal of agricultural and food chemistry, 2013, 61(16): 3852-3858.

[2] Gianluca R, Antonio L, Agnese R, et al. Vitamin B12 among vegetarians: status, assessment and supplementation[J]. Nutrients, 2016,8(12):767.

[3] Maiorova L A, Erokhina S I, Pisani M, et al. Encapsulation of vitamin B12 into nanoengineered capsules and soft matter nanosystems for targeted delivery[J]. Colloids and surfaces B: Biointerfaces, 2019,182:110366.

[4] Pautas E, Cherin P, Jaeger C D, et al. Vitamin B12 deficiency in the elderly[J]. La Presse Médicale, 1999, 28(32): 1767-1770.

[5] Clarke, Robert. B-vitamins and prevention of dementia.[J]. The Proceedings of the Nutrition Society, 2008, 67(1): 75-81.

[6] Huang Z B, Ahronheim J. The effect of vitamin B12 deficiency on the health of older individuals [J]. Journal of the American Geriatrics Society, 1999,47(9):1155-1158.

[7] Oh S, Cave G, Lu C. Vitamin B12 (cobalamin) and micronutrient fortification in food crops using nanoparticle technology[J]. Frontiers in plant science, 2021, 12: 668819.

[8] 赵武玲. 基础生物化学.第2版[M]. 基础生物化学.第2版, 2013:165.

[9] Chen H, Tan X, Fu Y, et al. The development of natural and designed protein nanocages for encapsulation and delivery of active compounds[J]. Food Hydrocolloids, 2021, 121:107004.

[10] Zhao G. Phytoferritin and its implications for human health and nutrition[J]. Biochimica et Biophysica Acta - Molecular Basis of Disease, 2010,1800(8):815-823.

[11] Zhang X, Zang J, Chen H, et al. Thermostability of protein nanocages: the effect of natural extra peptide on the exterior surface[J]. RSC Advances, 2019, 9(43): 24777-24782.

[12] Romagnani S. Immunological tolerance and autoimmunity[J]. Internal and Emergency Medicine, 2006, 1(3): 187-196.

[13] Yang R, Gao Y, Zhou Z, et al. Fabrication and characterization of ferritin–chitosan–lutein shell–core nanocomposites and lutein stability and release evaluation in vitro[J]. RSC Advances, 2016,6(42):35267-35279.

[14] Zhang T, Lv C, Chen L, et al. Encapsulation of anthocyanin molecules within a ferritin nanocage increases their stability and cell uptake efficiency[J]. Food Research International, 2014,62:183-192.

[15] Chen L, Bai G, Yang S, et al. Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability[J]. Food Research International, 2014,62:1147-1153.

[16] Yang R, Sun G, Zhang M, et al. Epigallocatechin gallate (EGCG) decorating soybean seed ferritin as a rutin nanocarrier with Prolonged Release Property in the Gastrointestinal Tract[J]. Plant Foods for Human Nutrition, 2016,71(3):277-285.

[17] Yang R, Liu Y, Meng D, et al. Urea-driven epigallocatechin Gallate (EGCG) permeation into the ferritin cage, an innovative method for fabrication of protein-polyphenol co-assemblies[J]. Journal of Agricultural and Food Chemistry, 2017,65(7):1410.

[18] Yang R, Tian J, Liu Y, et al. Thermally induced encapsulation of food nutrients into phytoferritin through the flexible channels without additives[J]. Journal of Agricultural & Food Chemistry, 2017:7b-3949b.

[19] 张晨曦, 张晓荣, 吕晨艳, 等. 超声辅助法制备铁蛋白-虾青素包埋物[J]. 食品科学, 2021,42(11):94-101.

[20] Kim M, Rho Y, Jin K S, et al. pH-dependent structures of ferritin and apoferritin in solution: disassembly and reassembly[J]. Biomacromolecules, 2011,12(5):1629.

[21] Masuda T, Goto F, Yoshihara T, et al. Crystalstructure of plant ferritin reveals a novel metal binding site that functions as a transit site for metal transfer in ferritin[J]. Journal of Biological Chemistry, 2010,285.