[email protected]

国际应用数学进展

Advances in International Applied Mathematics

您当前位置:首页 > 精选文章

Advances in International Applied Mathematics. 2025; 7: (3) ; 10.12208/j.aam.20250023 .

Characteristic description and numerical computation methods of centrally symmetric matrix algebra
中心对称矩阵代数的特征刻画与数值计算方法

作者: 卢晓明 *

广东工业大学 广东广州

*通讯作者: 卢晓明,单位:广东工业大学 广东广州;

引用本文: 卢晓明 中心对称矩阵代数的特征刻画与数值计算方法[J]. 国际应用数学进展, 2025; 7: (3) : 24-27.
Published: 2025/12/10 13:00:39

摘要

中心对称矩阵是一类具有特殊结构的矩阵,其在数值分析、图像处理、物理模拟及工程计算等领域具有广泛应用。由于其对称结构在代数计算中展现出独特的规律性,研究其代数特征不仅有助于深入理解矩阵理论,还能显著优化数值计算过程。本文从中心对称矩阵的定义与基本性质出发,深入分析其代数特征与谱结构,并系统探讨相关的数值计算方法,包括特征值求解、线性方程组求解及算法复杂度优化。通过构建结构化分解策略与高效迭代算法,本文旨在为工程计算中涉及中心对称矩阵问题提供理论支持与可行路径。

关键词: 中心对称矩阵;特征结构;数值算法;谱分解;迭代求解

Abstract

Centrosymmetric matrices are a class of specially structured matrices that find wide applications in numerical analysis, image processing, physical simulation, and engineering computation. Due to their symmetric configuration, these matrices exhibit distinctive patterns in algebraic operations. Studying their algebraic characteristics not only deepens the theoretical understanding of matrix theory but also significantly improves computational efficiency. This paper starts with the definition and basic properties of centrosymmetric matrices, then delves into their algebraic features and spectral structure. It systematically explores numerical computation methods related to such matrices, including eigenvalue computation, linear system solving, and algorithm complexity optimization. By developing structured decomposition strategies and efficient iterative algorithms, the paper aims to provide theoretical support and practical solutions for engineering problems involving centrosymmetric matrices.

Key words: Central symmetric matrix; Characteristic structure; Numerical algorithm; Spectral decomposition; Iterative solution

参考文献 References

[1] 宋哲贤.广义反中心对称矩阵反问题的最小二乘解及其推广[D].东北电力大学,2023.

[2] 郭丽杰,韩明花,周硕.中心主子阵约束下广义反中心对称矩阵的二次特征值反问题[J].东北电力大学学报,2018,38(03):84-89.

[3] 王小雪,程宏伟,杨琼琼,等.子矩阵约束下广义反中心对称矩阵的广义特征值反问题[J].东北电力大学学报,2014,34(04):80-85.

[4] 谢冬秀,黄宁军.谱约束下广义中心对称矩阵的最佳逼近解及扰动分析[J].北京交通大学学报,2013,37(06):139-142.

[5] 潘劲松.中心对称矩阵和反对称矩阵的研究(英文)[J].应用数学,2013,26(03):600-610.

[6] 唐波伟.广义逆的反序律和中心对称矩阵的性质[D].陕西师范大学,2013.

[7] 吴险峰,张晓林.反中心对称矩阵的性质[J].高师理科学刊,2011,31(06):3-5.

[8] 李珍珠,周立平.对称广义中心对称矩阵的左右逆特征值问题[J].数学研究,2011,44(02):193-199.