Advances in International Applied Mathematics
Advances in International Applied Mathematics. 2025; 7: (2) ; 10.12208/j.aam.20250012 .
总浏览量: 21
南昌工学院教育学院 江西南昌
*通讯作者: 周理凤,单位:南昌工学院教育学院 江西南昌;
数学教育家乔治·波利亚提出的“怎样解题表”作为系统化解题方法论,为揭示数学思维规律提供了重要理论框架。本研究基于波利亚解题理论,选取2024年江西中考数学试卷第17题为研究对象,通过课堂观察与案例分析相结合的研究方法,系统呈现“理解问题-拟定计划-执行计划-检验反思”四阶段理论在中考试题解答中的具体实践路径。研究发现,解题表通过可视化思维过程能有效提升学生的问题表征能力与策略选择意识,但在迁移应用环节仍存在元认知监控不足等问题。通过还原解题过程中的思维路径与偏差分析,本研究提出教学改进建议,教师应注重解题过程的显性化指导,通过搭建“问题脚手架”发展学生自我提问能力,进而促进数学核心素养的培育。研究结果为初中数学解题教学提供了可操作的理论实践范式,对发展学生系统性思维品质具有现实指导意义。
The “how to solve the problem table” proposed by mathematics educator George Polya, as a systematic solution methodology, provides an important theoretical framework for revealing the law of mathematical thinking. Based on the Polya problem-solving theory, this study takes the 17th question of the 2024 Jiangxi High School Entrance Examination mathematics paper as the research object. Through the research method combining classroom observation and case analysis, this study systematically presents the specific practical path of the four-stage theory of “understanding the problem-making a plan-executing the plan-checking and reflecting” in the solution of the high school entrance examination questions. The study found that the problem-solving table could effectively improve students’ problem representation ability and strategy selection awareness by visualizing the thinking process, but there were still some problems such as insufficient metacognitive monitoring in the transfer application. By analyzing the thinking path and deviation in the process of problem solving, this study puts forward suggestions for teaching improvement. Teachers should pay attention to the explicit guidance of the problem solving process, develop students’ self-questioning ability through the construction of “problem scaffolding”, and then promote the cultivation of core mathematical literacy. The research results provide an operational theoretical practice paradigm for the teaching of junior high school mathematics problem solving, and have practical guiding significance for the development of students’ systematic thinking quality.
[1] 邓新星,莫宗赵,周莹. 基于波利亚“怎样解题表”的解题教学研究——以“解三角形”为例[J]. 中学数学研究(华南师范大学版),2020,24: 23-25.
[2] 张雁. 基于波利亚解题思想的解题教学思考——以2020年高考全国Ⅱ卷理科数学第21题为例[J]. 中学数学研究(华南师范大学版),2021,12: 37-41.
[3] 杨晶玉. 波利亚“怎样解题表”在初中数学解题教学中的应用——以济南市中考题为例[J]. 理科考试研究,2023,30(22): 9-11.
[4] 廖志坚,李志文. “波利亚解题表”在高中数学解题教学中应用探究——以2012年广东高考理科数学20题为例[J]. 数学教学研究,2024,43(05): 28-30.
[5] 周理凤,王国威. 基于文献计量法的波利亚接替表在初中数学中的应用现状研究与可视化分析[J].中国科技经济新闻数据库 教育,2025,02: 163-167.
[6] 李志平,陈益智,王海青. 从波利亚的解题思想谈数学解题教学——以一道“折纸问题”为例[J]. 中学教研(数学),2023,09: 9-12.
[7] 波利亚. 怎样解题数学思维的新方法[M]. 涂泓,冯承天译. 上海:上海科技教育出版社,2011.