Advances in International Applied Mathematics
Advances in International Applied Mathematics. 2025; 7: (2) ; 10.12208/j.aam.20250015 .
总浏览量: 111
扬州大学数学科学学院 江苏扬州
*通讯作者: 赵雯雯,单位:扬州大学数学科学学院 江苏扬州;
辅助元素策略是高中数学中常见且实用的一种解题思路,能够帮助学生在解题过程中构建中间桥梁,将复杂问题逐步转化为清晰可解的步骤,降低思维负担。然而,许多学生对这一策略的理解仍不够深入,缺乏主动运用的意识。本文以高考数学题为例,围绕函数、几何、数列三类常见题型,选取具有代表性的题目进行分析,引导学生在实际解题过程中逐步形成构造辅助元素的思维方式,从而提升对题目结构的把握能力与整体解题的条理性。
The auxiliary element strategy is a common and practical problem-solving approach in high school mathematics. It helps students build intermediate bridges during problem-solving, gradually transforms complex problems into clear and solvable steps, and reduces cognitive load. However, many students do not fully understand this strategy and lack the awareness to use it actively. Using college entrance examination mathematics problems as examples, this paper focuses on three common types of problems: functions, geometry, and sequences. It selects representative problems for analysis to guide students in gradually forming a way of thinking that involves constructing auxiliary elements during actual problem-solving. This enhances their ability to grasp problem structures and improves the overall coherence of their solutions.
[1] 傅海伦,付晴.构造辅助元素在解决数学问题中的探究[J].中小学数学(高中版),2020,(06):50-53.
[2] 吴维群.构造辅助函数法在中学数学中的应用[J].中学生理科应试,2014,(12):1-2.
[3] 羌锋建. 重新定义辅助线,让几何教学更合理——从一道几何题的解法谈辅助线的教学[J]. 教学方法创新与实践, 2025, 4(01): 22–24.
[4] 房增凤.合理构造,巧解数列[J].高中数理化,2024,(03):17-18.
[5] 喻文琳.基于“构造法”的高中数学解题思路探索[J].数学之友,2025,(01):53-56.