[email protected]

国际应用数学进展

Advances in International Applied Mathematics

您当前位置:首页 > 精选文章

Advances in International Applied Mathematics. 2025; 7: (2) ; 10.12208/j.aam.20250011 .

Five typical question types of triangle solving problems in the college entrance examination and their solution strategies
高考中解三角形问题的五种典型题型及求解策略

作者: 钱雨凌 *

扬州大学数学科学学院 江苏扬州

*通讯作者: 钱雨凌,单位:扬州大学数学科学学院 江苏扬州;

引用本文: 钱雨凌 高考中解三角形问题的五种典型题型及求解策略[J]. 国际应用数学进展, 2025; 7: (2) : 8-14.
Published: 2025/6/20 10:10:49

摘要

本文以高考数学中解三角形问题为研究对象,旨在系统分析其题型特征与解题策略。通过梳理近五年全国高考试卷,归纳出五类典型题型:边角互换、面积计算、最值分析、取值范围和综合应用。针对每一类别,本文采用案例分析法,结合真题逐题剖析解题思路,并总结出相应策略,重点强调正弦定理、余弦定理、三角恒等变换及代数方法的灵活应用。该研究既有助于学生构建系统化的解题路径,提升题型识别与策略迁移能力,也可为高中数学教学与高考备考提供针对性参考。

关键词: 解三角形;高考;解题策略;正弦定理;余弦定理

Abstract

This paper focuses on triangle‐solving problems in the mathematics section of the National College Entrance Examination, aiming to systematically analyze their problem‐type characteristics and solution strategies. By reviewing Gaokao mathematics papers from the past five years, five representative problem types are identified: side‐angle interchange, area computation, extremum analysis, determination of value ranges, and integrated applications. For each category, a case‐analysis approach is employed, examining authentic exam questions step by step and summarizing the corresponding strategies, with particular emphasis on the flexible application of the law of sines, the law of cosines, trigonometric identity transformations, and algebraic methods. The findings of this study not only assist students in constructing a systematic problem‐solving framework and enhancing their ability to recognize problem types and transfer strategies, but also provide targeted guidance for high school mathematics instruction and Gaokao preparation.

Key words: Solving triangles; College entrance examination; Solution strategy; Law of sines; Law of cosines

参考文献 References

[1] 朱贤良,徐维武.精心研究五题型轻松求解三角形[J].河北理科教学研究,2022,(02):1-7+10.

[2] 潘步升.单元整体教学背景下“解三角形”高考复习案例研究[J].教育与研究,2024(2):288-291.

[3] 中华人民共和国教育部.普通高中数学课程标准(2017年版2020年修订)[M].北京:人民教育出版社,2020.

[4] 邢敦菊.高中数学解三角形常用策略之研究[J].数学学习与研究,2018,(01):141.

[5] 邵佳源.近年高考中四类解三角形试题的分析[J].中学数学,2023,(11):73-74.

[6] 龙正祥.基于创新思维培养的高考数学微专题设计——以“解三角形中最值问题”为例[J].中学数学,2022,(21): 44-47.

[7] 孙承辉.解三角形中的范围或最值问题[J].中学生数理化(高考数学),2025,(02):42-43+48.

[8] 王小嵋. 新高考背景下解三角形题型分析及教学策略研究[D]. 海南师范大学, 2021.