[email protected]

农业与食品科学

Journal of Agriculture and Food Science

您当前位置:首页 > 精选文章

Journal of Agriculture and Food Science. 2024; 4: (2) ; 10.12208/j.jafs.20240018 .

Recombinase polymerase amplification technology and its application in food detection
重组酶聚合酶扩增技术及其在食品安全检测领域的应用

作者: 李龙1, 王雨婷2, 宫玉晶2, 宋丽萍2 *

1 北京市计量检测科学研究院 北京

2 北京市食品检验研究院(北京市食品安全监控和风险评估中心) 北京

*通讯作者: 宋丽萍,单位: 北京市食品检验研究院(北京市食品安全监控和风险评估中心) 北京;

引用本文: 李龙, 王雨婷, 宫玉晶, 宋丽萍 重组酶聚合酶扩增技术及其在食品安全检测领域的应用[J]. 农业与食品科学, 2024; 4: (2) : 7-16.
Published: 2024/6/22 10:42:49

摘要

随着人们对食品安全问题的日益重视,适合在现场开展食品安全快速检测的技术越来越受到中国学者的广泛关注。重组酶聚合酶扩增技术(Recombinase Polymerase Amplification, RPA)是近年来新建立的一种等温核酸扩增技术。与传统的核酸检测技术相比,RPA技术具有检测速度快,成本低,对设备依赖性小等特点,非常适合在条件简陋或资源不足的地方开展现场食品安全检测工作。本文介绍了RPA的扩增原理和最常见的RPA反应终点检测技术——侧向流层析技术(LED)的原理;综述了RPA技术在食源性致病微生物检测、物种成分鉴定、转基因食品鉴定以及食品中过敏原成分鉴定中应用;总结分析了RPA技术在食品安全检测领域应用的优势和面临的挑战;并展望了RPA技术的未来发展前景。

关键词: 重组酶聚合酶扩增技术(RPA);等温核酸扩增技术;食品安全检测;食源性致病微生物;物种成分鉴定;转基因食品;过敏原成分

Abstract

As people pay more and more attention to food safety issues, the technology suitable for rapid food safety detection in the field has attracted more and more attention from Chinese scholars. Recombinase Polymerase Amplification (RPA) is a newly established isothermal nucleic acid amplification technique. Compared with the traditional nucleic acid detection technology, RPA technology has the characteristics of fast detection speed, low cost, little dependence on equipment, etc., which is very suitable for carrying out on-site food safety detection work in places with poor conditions or insufficient resources. This paper introduces the principle of RPA amplification and the principle of the most common RPA endpoint detection technology, lateral flow chromatography (LED). The application of RPA technology in detection of foodborne pathogenic microorganisms, identification of species components, identification of genetically modified food and identification of allergens in food was reviewed. The advantages and challenges of the application of RPA technology in the field of food safety inspection are summarized and analyzed. The future development prospect of RPA technology is also prospected.

Key words: Recombinase polymerase amplification technique (RPA); Isothermal nucleic acid amplification technique; Food safety testing; Foodborne pathogenic microorganisms; Species composition identification; Genetically modified food; Allergen component

参考文献 References

[1] PIEPENBURG O, WILLIAMS C H, STEMPLE D L, et al. DNA detection using recombination proteins [J]. PLoS Biol, 2006, 4(7): e204.

[2] LOBATO I M, O'SULLIVAN C K. Recombinase polymerase amplification: Basics, applications and recent advances [J]. Trends Analyt Chem, 2018, 98(19-35.

[3] KERSTING S, RAUSCH V, BIER F, et al. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis [J]. 2014, 13(1): 1-9.

[4] KROLOV K, FROLOVA J, TUDORAN O, et al. Sensitive and rapid detection of Chlamydia trachomatis by recombinase polymerase amplification directly from urine samples [J]. J Mol Diagn, 2014, 16(1): 127-35.

[5] CHOI G, JUNG J H, PARK B H, et al. A centrifugal direct recombinase polymerase amplification (direct-RPA) mi-crodevice for multiplex and real-time identification of food poisoning bacteria [J]. Lab Chip, 2016, 16(12): 2309-16.

[6] WU Y D, ZHOU D H, ZHANG L X, et al. Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for equipment-free detection of Cryptosporidium spp. oocysts in dairy cattle feces [J]. Parasitol Res, 2016, 115(9): 3551-5.

[7] MAYBORODA O, GONZALEZ BENITO A, SABATE DEL RIO J, et al. Isothermal solid-phase amplification system for detection of Yersinia pestis [J]. Anal Bioanal Chem, 2016, 408(3): 671-6.

[8] LILLIS L, LEHMAN D, SINGHAL M C, et al. Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA [J]. PLoS One, 2014, 9(9): e108189.

[9] CHANDU D, PAUL S, PARKER M, et al. Development of a Rapid Point-of-Use DNA Test for the Screening of Genuity(R) Roundup Ready 2 Yield(R) Soybean in Seed Samples [J]. Biomed Res Int, 2016, 2016(3145921.

[10] XIA X, YU Y, WEIDMANN M, et al. Rapid detection of shrimp white spot syndrome virus by real time, isothermal recombinase polymerase amplification assay [J]. PLoS One, 2014, 9(8): e104667.

[11] WEE E J, NGO T H, TRAU M. Colorimetric detection of both total genomic and loci-specific DNA methylation from limited DNA inputs [J]. Clin Epigenetics, 2015, 7(65.

[12] VALIADI M, KALSI S, JONES I G, et al. Simple and rapid sample preparation system for the molecular detection of antibiotic resistant pathogens in human urine [J]. Biomed Microdevices, 2016, 18(1): 18.

[13] LOO J F, LAU P M, HO H P, et al. An aptamer-based bio-barcode assay with isothermal recombinase polymerase amplification for cytochrome-c detection and anti-cancer drug screening [J]. Talanta, 2013, 115(159-65.

[14] JAUSET-RUBIO M, SABATE DEL RIO J, MAIRAL T, et al. Ultrasensitive and rapid detection of beta-conglutin combining aptamers and isothermal recombinase polymerase amplification [J]. Anal Bioanal Chem, 2017, 409(1): 143-9.

[15] LILJANDER A, YU M, O'BRIEN E, et al. Field-Applicable Recombinase Polymerase Amplification Assay for Rapid Detection of Mycoplasma capricolum subsp. capripneumoniae[J]. J Clin Microbiol, 2015, 53(9):2810-5.

[16] DAHER R K, STEWART G, BOISSINOT M, et al. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology [J]. Mol Cell Probes, 2015, 29(2): 116-21.

[17] MONDAL D, GHOSH P, KHAN M A, et al. Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay [J]. Parasit Vectors, 2016, 9(1): 281.

[18] LIU Y, LEI T, LIU Z, et al. A Novel Technique to Detect EGFR Mutations in Lung Cancer [J]. Int J Mol Sci, 2016, 17(5): 

[19] BOYLE D S, LEHMAN D A, LILLIS L, et al. Rapid detection of HIV-1 proviral DNA for early infant diagnosis using recombinase polymerase amplification [J]. mBio, 2013, 4(2): 

[20] KERSTING S, RAUSCH V, BIER F F, et al. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens [J]. Mikrochim Acta, 2014, 181(13-14): 1715-23.

[21] KUNZE A, DILCHER M, ABD EL WAHED A, et al. On-Chip Isothermal Nucleic Acid Amplification on Flow-Based Chemiluminescence Microarray Analysis Platform for the Detection of Viruses and Bacteria [J]. Anal Chem, 2016, 88(1): 898-905.

[22] WEE E J, HA NGO T, TRAU M. A simple bridging flocculation assay for rapid, sensitive and stringent detection of gene specific DNA methylation [J]. Sci Rep, 2015, 5(15028.

[23] KIM J, BIONDI M J, FELD J J, et al. Clinical Validation of Quantum Dot Barcode Diagnostic Technology [J]. ACS Nano, 2016, 10(4): 4742-53.

[24] MING K, KIM J, BIONDI M J, et al. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients [J]. ACS Nano, 2015, 9(3): 3060-74.

[25] ROHRMAN B A, RICHARDS-KORTUM R R. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA [J]. Lab Chip, 2012, 12(17): 3082-8.

[26] CRANNELL Z A, CASTELLANOS-GONZALEZ A, IRANI A, et al. Nucleic acid test to diagnose cryptosporidiosis: lab assessment in animal and patient specimens [J]. Anal Chem, 2014, 86(5): 2565-71.

[27] LI J, MA B, FANG J, et al. Recombinase Polymerase Amplification (RPA) Combined with Lateral Flow Immunoassay for Rapid Detection of Salmonella in Food [J]. Foods, 2019, 9(1): 

[28] LIU H B, ZANG Y X, DU X J, et al. Development of an isothermal amplification-based assay for the rapid visual detection of Salmonella bacteria [J]. J Dairy Sci, 2017, 100(9): 7016-25.

[29] GAO W, HUANG H, ZHU P, et al. Recombinase polymerase amplification combined with lateral flow dipstick for equipment-free detection of Salmonella in shellfish [J]. Bioprocess Biosyst Eng, 2018, 41(5): 603-11.

[30] YANG X, ZHAO P, DONG Y, et al. An improved recombinase polymerase amplification assay for visual detection of Vibrio parahaemolyticus with lateral flow strips [J]. J Food Sci, 2020, 85(6): 1834-44.

[31] YANG X, ZHANG X, WANG Y, et al. A Real-Time Recombinase Polymerase Amplification Method for Rapid Detection of Vibrio vulnificus in Seafood [J]. Front Microbiol, 2020, 11(586981.

[32] GENG Y, TAN K, LIU L, et al. Development and evaluation of a rapid and sensitive RPA assay for specific detection of Vibrio parahaemolyticus in seafood [J]. BMC Microbiol, 2019, 19(1): 186.

[33] JIANG W, REN Y, HAN X, et al. Recombinase polymerase amplification-lateral flow (RPA-LF) assay combined with immunomagnetic separation for rapid visual detection of Vibrio parahaemolyticus in raw oysters [J]. Anal Bioanal Chem, 2020, 412(12): 2903-14.

[34] HU J, WANG Y, DING H, et al. Recombinase polymerase amplification with polymer flocculation sedimentation for rapid detection of Staphylococcus aureus in food samples [J]. Int J Food Microbiol, 2020, 331(108691.

[35] AZINHEIRO S, CARVALHO J, PRADO M, et al. Application of Recombinase Polymerase Amplification with Lateral Flow for a Naked-Eye Detection of Listeria monocytogenes on Food Processing Surfaces [J]. Foods, 2020, 9(9): 

[36] HU J, WANG Y, SU H, et al. Rapid analysis of Escherichia coli O157:H7 using isothermal recombinase polymerase amplification combined with triple-labeled nucleotide probes [J]. Mol Cell Probes, 2020, 50(101501.

[37] LIU S, GENG Y, LIU L, et al. Development of an isothermal amplification-based assay for the rapid detection of Cronobacter spp [J]. J Dairy Sci, 2018, 101(6): 4914-22.

[38] GENG Y, LIU G, LIU L, et al. Real-time recombinase polymerase amplification assay for the rapid and sensitive detection of Campylobacter jejuni in food samples [J]. J Microbiol Methods, 2019, 157(31-6.

[39] MA B, LI J, CHEN K, et al. Multiplex Recombinase Polymerase Amplification Assay for the Simultaneous Detection of Three Foodborne Pathogens in Seafood [J]. Foods, 2020, 9(3): 

[40] HICE S A, CLARK K D, ANDERSON J L, et al. Capture, Concentration, and Detection of Salmonella in Foods Using Magnetic Ionic Liquids and Recombinase Polymerase Amplification [J]. Anal Chem, 2019, 91(1): 1113-20.

[41] AHN H, BATULE B S, SEOK Y, et al. Single-Step Recombinase Polymerase Amplification Assay Based on a Paper Chip for Simultaneous Detection of Multiple Foodborne Pathogens [J]. Anal Chem, 2018, 90(17): 10211-6.

[42] HU J, HUANG R, SUN Y, et al. Sensitive and rapid visual detection of Salmonella Typhimurium in milk based on recombinase polymerase amplification with lateral flow dipsticks [J]. J Microbiol Methods, 2019, 158(25-32.

[43] MURINDA S E, IBEKWE A M, ZULKAFFLY S, et al. Real-time isothermal detection of Shiga toxin-producing Escherichia coli using recombinase polymerase amplifica-tion [J]. Foodborne Pathog Dis, 2014, 11(7): 529-36.

[44] JIA T, YU Y, WANG Y. A recombinase polymerase amplification-based lateral flow strip assay for rapid detection of genogroup II noroviruses in the field [J]. Arch Virol, 2020, 165(12): 2767-76.

[45] HAN Y, WANG J, ZHANG S, et al. Rapid detection of norovirus genogroup II in clinical and environmental samples using recombinase polymerase amplification [J]. Anal Biochem, 2020, 605(113834.

[46] JARVI S I, ATKINSON E S, KALUNA L M, et al. Development of a recombinase polymerase amplification (RPA-EXO) and lateral flow assay (RPA-LFA) based on the ITS1 gene for the detection of Angiostrongylus cantonensis in gastropod intermediate hosts [J]. Parasitology, 2021, 148(2): 251-8.

[47] FU M, ZHANG Q, ZHOU X, et al. Recombinase Polymerase Amplification Based Multiplex Lateral Flow Dipstick for Fast Identification of Duck Ingredient in Adulterated Beef [J]. Animals (Basel), 2020, 10(10): 

[48] KISSENKOTTER J, BOHLKEN-FASCHER S, FORREST M S, et al. Recombinase polymerase amplifica-tion assays for the identification of pork and horsemeat [J]. Food Chem, 2020, 322(126759.

[49] XU C, LI L, JIN W, et al. Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops [J]. Int J Mol Sci, 2014, 15(10): 18197-205.

[50] LI K, LUO Y, HUANG K, et al. Single universal primer recombinase polymerase amplification-based lateral flow biosensor (SUP-RPA-LFB) for multiplex detection of genetically modified maize [J]. Anal Chim Acta, 2020, 1127(217-24.