[email protected]

国际应用数学进展

Advances in International Applied Mathematics

您当前位置:首页 > 精选文章

Advances in International Applied Mathematics. 2024; 6: (2) ; 10.12208/j.aam.20241006 .

Research on time series analysis of NYSE stock prices
基于NYSE股票价格的时间序列分析研究

作者: 罗兰一星 *

中央财经大学 北京

*通讯作者: 罗兰一星,单位:中央财经大学 北京;

引用本文: 罗兰一星 基于NYSE股票价格的时间序列分析研究[J]. 国际应用数学进展, 2024; 6: (2) : 8-13.
Published: 2024/6/21 15:41:32

摘要

随着如今金融市场的不断发展,股票价格变动成为人们关注的焦点。股票价格不仅反映了公司的经营状况和市场价值,还受到宏观经济、政策调整、等多种因素的影响。因此,如何对股票价格进行准确地分析和预测,对于指导投资决策、维持金融市场稳定等具有重要意义。本文以1984-2012长时间跨度的纽约证券交易所美股收盘价格数据为基础,从分层和整体两方面构建时间序列模型对股票价格进行预测和分析。在实证分析当中,通过对比不同模型方法,旨在为提高股票价格预测的准确性和可靠性提供新的思路和方法,从而为投资者与金融机构提供更准确的决策支持,促进金融市场的稳定和发展。

关键词: 时间序列;ARIMA模型;股票价格分析

Abstract

With the continuous development of the financial market, stock price fluctuations have become the focus of people's attention today. Stock prices not only reflect a company's operating conditions and market value, but are also influenced by various factors such as macroeconomic and policy adjustments. Therefore, accurate analysis and prediction of stock prices are of great significance for guiding investment decisions and maintaining financial market stability. Based on the close price data of the New York Stock Exchange from 1984 to 2012, this paper constructs a time series model to forecast and analyze stock prices from two aspects: stratification and whole. In the empirical analysis, by comparing different model methods, it aims to provide new ideas and methods for improving the accuracy and reliability of stock price prediction, so as to provide more accurate decision support for investors and financial institutions, and promote the stability and development of financial market.

Key words: Time series; ARIMA model; Stock price analysis

参考文献 References

[1] 程孟菲;高淑萍;.基于深度迁移学习的多尺度股票预测[J].计算机工程与应用,2022(12).

[2] Zhang Q, Yang L, Zhou F. Attention enhanced long short-term memory network with multi-source heterogeneous information fusion: An application to BGI Genomics[J]. Information Sciences, 2021,553:305-330.

[3] Zhao J, Zeng D, Liang S, et al. Prediction model for stock price trend based on recurrent neural network[J]. Journal of Ambient Intelligence and Humanized Computing, 2021,12(1): 745-753.

[4] 张艺萧. 基于时间序列的股票价格分析与预测[D].华北电力大学(北京),2020.     

[5] 李奋华,赵润林. 一种基于时间序列分析的股票走势预测模型[J].现代计算机(专业版), 2016, (20): 14-17.  

[6] 杨智勇,叶玉玺,周瑜. 基于BiLSTM-SA-TCN时间序列模型在股票预测中的应用[J]. 南京信息工程大学学报(自然科学版), 2023, 15 (06): 643-651. 

[7] 高雅婷.时间序列趋势预测方法研究及其在股票市场的应用[D].山东工商学院, 2022.

[8] 陈登建,杜飞霞,夏换.  基于ARIMA与SVR滚动残差模型组合的股票预测[J]. 计算机时代, 2022, (05): 76-81. 

[9] Liang M , Wu S , Wang X ,et al.A stock time series forecasting approach incorporating candlestick patterns and sequence similarity[J].Expert Systems with Application, 2022.

[10] Pin Lv ,Qinjuan Wu,Jia Xu,et al.Stock Index Prediction Based on Time Series Decomposition and Hybrid Model[J].Entropy,2022

[11] Horák Jakub;Krulický Tomáš.Comparison of exponential time series alignment and time series alignment using artificial neural networks by example of prediction of future development of stock prices of a specific company.[J].SHS Web of Conferences.Volume 61, Issue .2019. PP 01006.