Advances in International Applied Mathematics
Advances in International Applied Mathematics. 2024; 6: (3) ; 10.12208/j.aam.20240025 .
总浏览量: 781
扬州大学数学科学学院 江苏扬州
*通讯作者: 夏雨彤,单位:扬州大学数学科学学院 江苏扬州;
单叶双曲面作为一类直纹曲面,因其优美的几何结构,在工程建筑中常常受到设计师的青睐。为了更好地理解单叶双曲面的内在几何结构,本文介绍该曲面的四种构造方法,其中两种方法是把该曲面作为旋转曲面,另外两种方法是把该曲面作为直线运动的轨迹。本文的结果揭示了单叶双曲面丰富的几何结构。
As a kind of ruled surfaces, the one-sheet hyperboloid is favored by designers in engineering buildings because of its excellent geometric structure. In order to better understand the intrinsic geometry of the one-sheet hyperboloid, in this paper we introduce four construction methods for such surfaces, two of which are to take the surface as a rotating one, and the other two are to take the surface as a trajectory of moving straight lines. The results of this paper reveal the rich geometry of one-sheet hyperboloid.
[1] 包红泽. 鸟巢型索穹顶结构的理论分析与试验研究[D]. 浙江大学, 2007.
[2] 李辉, 陈平, 任智民. 旋转双曲面自然通风冷却塔塔筒筒壁在集中载荷作用下的应力分析[J]. 力学与实践, 1988 (05): 22-26.
[3] 刘驰. 针对既有双曲线冷却塔结构的可靠性鉴定及处理[J]. 安徽建筑, 2023, 30(06): 167-168 +184.
[4] 崔鹏. “小蛮腰”里的几何问题[J].中学生数学, 2023(09): 23-25.
[5] 周芳. 旋转单叶双曲面与旋转椭圆面的相关性质[J]. 安徽教育学院学报, 2001(03): 16-18.
[6] 吕端良. 旋转曲面方程的求法[J]. 江西科学, 2019, 37(01): 24-25.
[7] 吕林根, 许子道. 解析几何(第五版)[D]. 高等教育出版社, 2019.