[email protected]

国际应用数学进展

Advances in International Applied Mathematics

您当前位置:首页 > 精选文章

Advances in International Applied Mathematics. 2024; 6: (3) ; 10.12208/j.aam.20240026 .

The strategy of solving the "Hu does not return" problem from the interdisciplinary perspective
跨学科视角看待“胡不归”问题的解题策略

作者: 蔡兴宇 *

扬州大学数学科学学院 江苏扬州

*通讯作者: 蔡兴宇,单位:扬州大学数学科学学院 江苏扬州;

引用本文: 蔡兴宇 跨学科视角看待“胡不归”问题的解题策略[J]. 国际应用数学进展, 2024; 6: (3) : 24-30.
Published: 2024/9/5 11:12:37

摘要

“胡不归”模型是几何动点最值问题中的备受关注的一种解题方法。本文从跨学科的角度研究了如何将物理知识应用于解决数学中的“胡不归”问题,以培养学生的综合素养。本文首先通过具体实例介绍了利用光的折射原理来辅助初学者构造直角三角形,从而引出解决“胡不归”问题的策略,以提高学生的问题解决能力和创新意识。最后讨论了如何在教学中融合不同学科的知识,以提高学生的学习兴趣和能力。

关键词: 跨学科学习;光的折射原理;“胡不归”问题

Abstract

"Hu Fugui" model is one of the most concerned methods for solving the geometric moving point maximum problem. This paper studies how to apply physics knowledge to solve the problem of "Hu does not return" in mathematics in order to cultivate students' comprehensive quality. This paper first introduces the use of light refraction principle to assist beginners to construct right triangle, and then leads to the strategy to solve the "Hu does not return" problem, so as to improve students' problem-solving ability and innovation consciousness. Finally, it discusses how to integrate the knowledge of different subjects in teaching in order to improve students' learning interest and ability.

Key words: Interdisciplinary learning; The principle of light refraction; The "Hu does not return" problem

参考文献 References

[1] 杨婕,汤琼.“胡不归”最值模型及其应用[J].数学之友,2023,37(10):71-73.

[2] 苏国东.“胡不归”问题的求解策略[J].数理化解题研究,2021,(17):8-9.

[3] 高加来.经典永流传——历久弥新的“胡不归”模型[J].初中生学习指导,2020,(21):18-19.

[4] 李明.经典问题焕发光彩——“胡不归”问题的应用及变式[J].初中数学教与学,2020,(15):16-17.

[5] 黄树明.“胡不归”问题的跨学科领域解决策略[J].中学数学杂志,2024,(02):47-49.