Advances in International Applied Mathematics
Advances in International Applied Mathematics. 2024; 6: (2) ; 10.12208/j.aam.20240010 .
总浏览量: 1050
扬州大学数学科学学院 江苏扬州
*通讯作者: 刘瑞,单位:扬州大学数学科学学院 江苏扬州;
本文通过定性和定量研究方法,分析了2019-2023年全国高考平面解析几何试题的特点。研究发现,高考改革后,平面解析几何题目的数量增加,难度上升,且更加强调数学核心素养和逻辑推理能力。文章提出,教学应创设丰富的教学情境,激发学生兴趣;灵活运用知识,建立完整的知识体系;培养学生的逻辑推理和数学运算能力;提升教师的专业素养,挖掘教育价值。这些发现和建议对于指导教学具有重要意义。
Through qualitative and quantitative research methods, this paper analyzes the characteristics of the 2019-2023 paper. The study found that after the reform of the college entrance examination, the number of plane analytical geometric questions increased, the difficulty increased, and more emphasis on mathematical core literacy and logical reasoning ability. This paper proposes that the teaching should create rich teaching situations to stimulate students 'interest, flexibly use knowledge and establish a complete knowledge system; cultivate students' logical reasoning and mathematical operation ability, and explore the educational value. These findings and suggestions are important for guiding teaching.
[1] 中华人民共和国教育部.普通高中数学课程标准(2017年版2020年修订)[M]. 北京:人民教育出版社,2020:2,4, 40,81.
[2] 武小鹏, 孔企平.基于AHP理论的数学高考试题综合难度模型建构与应用[J]. 数学教育学报,2020,29(02):29-34.
[3] 廖艺捷, 朱展霖, 胡典顺. 近五年高考概率与统计试题的统计与分析—以全国Ⅰ卷(理科)为例[J].数学通报, 2021,60(02):56-62.
[4] 汤语凡.近六年高考立体几何试题的统计与分析—以2018—2020年全国卷和2021——2023年新高考卷为例[J].数学通报,2023,62(11):34-41+66.
[5] 瓦·阿·苏霍姆林斯基.给教师的建议[M].杜殿坤,译.北京: 教育科学出版社, 1984: 15