[email protected]

国际应用数学进展

Advances in International Applied Mathematics

您当前位置:首页 > 精选文章

Advances in International Applied Mathematics. 2024; 6: (2) ; 10.12208/j.aam.20240006 .

The application of the plane vector iso-sum line theorem in triangles
平面向量等和线定理在三角形中的应用

作者: 朱海静 *

扬州大学 江苏扬州

*通讯作者: 朱海静,单位:扬州大学 江苏扬州;

引用本文: 朱海静 平面向量等和线定理在三角形中的应用[J]. 国际应用数学进展, 2024; 6: (2) : 1-7.
Published: 2024/6/21 18:01:16

摘要

平面向量是解决数学问题的重要工具,其中三点共线定理是平面向量模块的重要知识点。平面向量等和线定理作为平面向量三点共线定理的拓展,在解决向量线性表示中的系数和相关问题时具有简洁性。本文将从平面向量三点共线定理出发,探究等和线的概念和相关性质,并以等和线定理在三角形中的应用为例,从数形结合的角度展现其在解决平面向量线性表示的系数和、最值、取值范围题型中的高效性和直观性。最后总结解决系数和相关问题的一般逻辑和注意点,旨在帮助学生优化上述一类题目的解题思路,提高学生的解题效率,提升直观想象等方面的数学学科核心素养。

关键词: 平面向量;等和线定理;三角形

Abstract

Plane vectors are important tools for solving mathematical problems, with the collinearity theorem of three points being a key concept in the plane vector module. The plane vector iso-sum line theorem, as an extension of the collinearity theorem of three points in plane vectors, is concise in solving problems related to coefficients and other issues in vector linear representation. This article will start from the collinearity theorem of three points in plane vectors, explore the concept and properties of iso-sum lines, and use the iso-sum line theorem in triangles as an example to demonstrate its efficiency and intuitiveness in solving coefficient sum, maximum value, and value range problems in plane vector linear representation from the perspective of numerical and geometric combination. Finally, it will summarize the general logic and key points for solving coefficient-related problems, aiming to help students optimize their problem-solving strategies for such types of questions, improve their problem-solving efficiency, and enhance their core mathematical skills in aspects such as intuitive imagination.

Key words: Plane vectors; The iso-sum line theorem; Triangle

参考文献 References

[1] 代赵玉,许志城,魏俊潮.巧用等和线解决向量双变量问题[J].数理化解题研究,2022(25):95-97. 

[2] 吴莉娜.寻问题模型之源  挖教材潜在之能[J].数学通报,2021,60(05):41-45.

[3] 朱亚旸.巧用基底系数的“等和”性质解题[J].高中数学教与学,2023(05):15-16+7. 

[4] 朱方宇.等和线在平面向量线性表示中的应用举例[J].中学数学月刊,2021(04):61-62.

[5] 杨瑞强.巧用“等和线”妙解向量题[J].中学数学教学,2022(02):53-56.