Advances in International Applied Mathematics
Advances in International Applied Mathematics. 2024; 6: (1) ; 10.12208/j.aam.20240002 .
总浏览量: 947
扬州大学数学科学学院 江苏扬州
*通讯作者: 王睿之,单位:扬州大学数学科学学院 江苏扬州;
矩阵是高等代数中的一个重要概念,也是数学建模中广泛应用的工具。在各个领域中,矩阵都得到了较好的适用性,可以解决大部分问题。然而,尽管矩阵在数学建模中具有广泛应用,但是这方面的研究并没有一个系统的归纳与优化,本文旨在对矩阵在数学建模中的应用进行一个系统的介绍,并探索矩阵在新兴领域的应用中如何优化建模,特别是矩阵与神经网络的结合,不仅为优化建模提供了新的可能性,同时也为新兴领域的研究者们提供了宝贵的思路和工具。
Matrices are an important concept in advanced algebra and a widely used tool in mathematical modeling. They have found good applicability in various fields and can solve a wide range of problems. However, despite their wide application in mathematical modeling, there is not a systematic summary and optimization of this area of research. This paper aims to provide a systematic introduction to the application of matrices in mathematical modeling and explore how matrices can be optimized for use in emerging fields. In particular, the combination of matrices and neural networks is discussed, offering not only new possibilities for optimized modeling but also valuable insights and tools for researchers in emerging fields.
[1] 刘钊,崔珑献,李岩等.基于二维矩阵分解的船舶交通流预测[J].中国航海,2021,44(03):76-83.
[2] 严玉芳.基于Matlab的马尔科夫链预测优化模型及其应用[J].集成电路应用,2022,39(07):268-270.
[3] 张雅晴. 卷积神经网络在GPU上的并行优化[D].西南科技大学,2023.
[4] 李世杰. 卷积神经网络存储加速优化关键技术研究[D].国防科技大学,2021.
[5] 林敏,杨耀宁.大数据挖掘中神经网络学习算法高可靠性仿真[J].计算机仿真,2023,40(07):491-495.