Advances in International Applied Mathematics
Advances in International Applied Mathematics. 2023; 5: (4) ; 10.12208/j.aam.20230021 .
总浏览量: 674
扬州大学 江苏扬州
*通讯作者: 刘敏,单位:扬州大学 江苏扬州;
近年来,图形的旋转变换已成为中考试题的热点之一,几何问题题目中虽没有“旋转”二字,解题思路常需要构造旋转化归元素,即将元素集中或分散,从而巧妙解决较难的几何问题,考验学生的几何直观和空间想象能力。应用“图形的旋转”对几何图形运动问题展开研究,把静止的问题转化成动态,可以拓展学生的想象空间,挖掘知识间的内在联系,构造出新的图形[1]。因此,教师应在本单元教学时多挖掘学生的动态思维过程。几何问题变换虽然难度较大,若能针对题目的本质特征,合理的运用旋转,往往可以化难为易,化繁为简[2]。
In recent years, the rotation transformation of graphics has become one of the hot topics in the middle school exam. Although there is no word “rotation” in the geometry problem, the solution idea often needs to construct the rotation to reduce the elements, that is, the element is concentrated or dispersed, so as to solve the difficult geometric problems skillfully, and test the students' geometric intuition and spatial imagination ability. The application of “rotation of graphics” to the study of the motion of geometric figures, the transformation of static problems into dynamic problems, can expand students' imagination space, excavate the internal relations between knowledge, and construct new graphics. Therefore, teachers should explore students' dynamic thinking process in the teaching of this unit. Although the transformation of geometric problems is difficult, if we can reasonably use rotation according to the essential characteristics of the problem, we can often transform the difficult into easy and complex into simple.
[1] 张东芳,濮安山.运用旋转变换巧解中考数学题例析[J].中学生数学,2022 (22):39-41.
[2] 赵生初,许正川,卢秀敏.图形的旋转在解题实践中的探索与思考[J].数学通报,2012,51(07):33-38.
[3] 陶宝艳.巧用旋转变换转移线段[J].中学生数学,2023(10):22-24.
[4] 郭紫娇.让旋转变换解决问题变得“有章可循”[J].中学理科园地,2022,18(04):74-76+92.
[5] 赵红霞.旋转变换在平面几何中的巧用[J].数学教学通讯,2018(20):79-80.
[6] 王晓军,汪晓勤.HPM视角下的“图形旋转”问题探究[J].数学通报,2012,51 (05):16-19.
[7] 周杨.巧用旋转模型解题[J].初中数学教与学,2019(17):28-30.