[email protected]

国际应用数学进展

Advances in International Applied Mathematics

您当前位置:首页 > 精选文章

Advances in International Applied Mathematics. 2023; 5: (2) ; 10.12208/j.aam.20231107 .

The exploration of problems about definite value in conic sections
关于圆锥曲线中定值问题的设法探究

作者: 马宇超 *, 许志城, 魏俊潮

扬州大学 江苏扬州

*通讯作者: 马宇超,单位:扬州大学 江苏扬州;

引用本文: 马宇超, 许志城, 魏俊潮 关于圆锥曲线中定值问题的设法探究[J]. 国际应用数学进展, 2023; 5: (2) : 20-24.
Published: 2023/6/28 18:39:51

摘要

在平面解析几何中,定值问题一向是圆锥曲线问题中的重难点之一,经常出现在历年的高考卷中,学生在面临此类问题时,往往会遇到不知如何下手以及不知该如何套用韦达定理等问题,本文针对这些问题总结了两个具体的解题思路,希望可以减轻学生解决此类问题时面临的困难。

关键词: 韦达定理;圆锥曲线;定值问题

Abstract

In Plane Analytic Geometry, Problems about definite value have always been one of the emphasis and difficulties of conic section problem, frequently appearing in college entrance examination over the years, when students face such problems, often encounter many problems such as how to start solving such problems and how to apply Vieta Theorem and so on, this paper summarizes two specific resolving ideas of these problems, hoping it can alleviate the difficulties faced by students when solving such problems.

Key words: Vieta theorem;conic sections;Fixed value problem

参考文献 References

[1] 卢会玉. 圆锥曲线中的特殊韦达定理问题探究[J]. 数理化解题研究,2021(34):42-43.

[2] 苗媛媛. 关于韦达定理法中直线方程的设法探究[J]. 数理化解题研究,2022(10):30-32.

[3] 李文东. 例谈解析几何中的非对称问题[J]. 数理化解题研究,2021(34):60-61.

[4] 徐皓亮. 浅析在圆锥曲线中韦达定理的处理[J]. 数学教学通讯,2016(24):34-35.

[5] 刘天武. 韦达定理整体构造方法的巧用[J]. 数理化解题研究,2022(4):30-32.