[email protected]

国际应用数学进展

Advances in International Applied Mathematics

您当前位置:首页 > 精选文章

Advances in International Applied Mathematics. 2023; 5: (1) ; 10.12208/j.aam.20230002 .

Shape characteristics and application prospects of a new heteromorphic superelliptic equation
一种新的异形超椭圆方程、形状特征及其应用前景

作者: 武周虎 *

青岛理工大学

*通讯作者: 武周虎,单位:青岛理工大学;

引用本文: 武周虎 一种新的异形超椭圆方程、形状特征及其应用前景[J]. 国际应用数学进展, 2023; 5: (1) : 27-40.
Published: 2023/3/21 14:03:27

摘要

异形超椭圆是一种只有单对称轴的平面闭合曲线,该形状普遍存在于自然界和工程设计中,具有重要学术研究意义。基于宽阔河流平面二维变系数对流扩散物质的等浓度线方程和镜面成像原理,定义了包含半长度(半高度)、半宽度、丰度指数和偏度指数的四参数异形超椭圆标准方程;推导出异形超椭圆的面积公式和绕对称轴旋转体的体积公式;分析发现丰度指数只影响异形超椭圆的丰满程度,偏度指数只影响异形超椭圆最大宽度线偏离原点的相对距离,给出蛋形、飞机截面、鱼雷、飞碟等20种图形/图案相应的异形超椭圆特征参数;分析表明异形超椭圆的连续性、光滑性和整体性好,应用于隧道与地下工程、建筑与桥梁工程、液体运输罐和飞行器与水中航行器等设计中,还需要进行结构与流体力学性能研究。

关键词: 四参数曲线;异形超椭圆;几何性质;丰度指数;偏度指数

Abstract

A heteromorphic superellipse is a planar closed curve with a single symmetric axis, which is frequently encountered in natural environments and human engineering designs, and thus it is of great academic importance. In this study, we define a standard equation for a new heteromorphic superellipse with four parameters comprising the half-length (half-height), half-width, richness index, and skewness index based on the planar two-dimensional variable-coefficient isoconcentration line equation for advection diffusion substances in wide rivers and specular image theory. In addition, we derive equations for computing the area of a heteromorphic superellipse and the volume of a heteromorphic superellipse revolved body. We show that the richness index only affects the degree of fullness and the skewness index only affects the distance of the deviation from the origin to the maximum width line of the heteromorphic superellipse. Furthermore, we present the characteristic parameters for 20 heteromorphic superelliptic shapes, such as an egg, aircraft cross-section, torpedo, and flying saucer. Based on our analysis, we conclude that the continuity, smoothness and integrity of the heteromorphic superellipse are good. The practical applications of the heteromorphic superellipse in areas such as tunnel and underground engineering, civil and bridge engineering, liquid transport containers, aerospace and underwater vehicles designs require further structural and fluid mechanics research.

Key words: Four-Parameter Curve; Heteromorphic Superellipse; Geometric Property; Richness Index; Skewness Index

参考文献 References

[1] SOKOLOV D. D. "Lamé curve", in Hazewinkel, Michiel, Encyclopedia of mathematics[M]. New York: Springer-Verlag New York, Inc. , 2001: 322-325. 

[2] GARDNER M. "Piet Hein's superellipse. " reprinted in the collosal book of mathematics[M]. New York: W. W. Norton & Co. , 2001: 299-300. 

[3] GARDNER M. The last recreations: hydras, eggs, and other mathematical mystifications[M]. New York: Springer-Verlag New York, Inc. , 1997: 487-488. 

[4] JÜRGEN K. Egg curves and ovals[EB/OL].[2021-01-15]. http: //www. mathematische-basteleien. de/eggcurves. htm. 

[5] 谷超豪. 数学词典[M]. 上海: 上海辞书出版社, 1992: 527-528. 

[6] 武周虎. 水库铅垂岸地形污染混合区的三维解析计算方法[J]. 西安理工大学学报, 2009, 25(4): 436-440. 

[7] WU ZHOUHU, WU WEN, WU GUIZHI. Calculation method of lateral and vertical diffusion coefficients in wide straight rivers and reservoirs[J]. Journal of Computers, 2011, 6(6): 1102-1109. 

[8] WU ZHOUHU. A new two-parameter heteromorphic elliptic equation: properties and applications[J]. World Journal of Engineering and Technology, 2020, 8(4): 642-657. 

[9] 武周虎. 一种新型异形椭圆隧道横断面的性质及优化设计[J]. 重庆交通大学学报(自然科学版), 2021, 40(1): 87-95. 

[10] 武周虎, 王瑜, 祝帅举. 一种新型异形椭圆无压隧洞断面的水力学分析[J]. 水利水电科技进展, 2020, 40(5): 1-8. 

[11] 武周虎. 考虑河流流速和横向扩散系数变化的污染混合区理论分析及其分类[J]. 水利学报, 2019, 50(3): 323-334. 

[12] WU WEN, WU ZHOUHU, SONG ZHIWEN. Calculation method for steady-state pollutant concentration in mixing zones considering variable lateral diffusion coefficient[J]. Water Science and Technology, 2017, 76 (1): 201-209. 

[13] WU ZHOUHU, WU WEN. Theoretical analysis of pollutant mixing zone considering lateral distribution of flow velocity and diffusion coefficient[J]. Environmental Science and Pollution Research, 2019, 26(30): 30675-30683. 

[14] 武周虎. 三参数异形椭球面方程、几何特征及应用前景[J]. 西安理工大学学报,2022,38(2):295-300. 

[15] NARUSHIN, V. G. Shape geometry of the avian egg[J]. Journal of Agricultural Engineering Research, 2001, 79(4), 441-448. 

[16] 王佳杰, 邓峰, 余雄庆. 客机机身剖面外形的优化设计[J]. 机械设计与制造工程, 2014, 43(1): 20-23. 

[17] 王磊, 曹喜峰, 陈学刚. 民用飞机后机身参数化设计探究[J]. 民用飞机设计与研究, 2010(3): 24-26. 

[18] 百度百科. 冯•卡门曲线[EB/OL].[2021-01-16]. https: //baike. baidu. com/item/%E5%86%AF%C2%B7%E5%8D%

A1%E9%97%A8%E6%9B%B2%E7%BA%BF/12577175?fr=aladdin. 

[19] 张晋刚. 公路隧道支护结构设计的优化方法研究[J]. 山西交通科技, 2004(5): 59-60, 66. 

[20] 王玲玲, 张凤山, 唐洪武. 平原河道桥墩阻水比与壅水特性关系[J]. 河海大学学报(自然科学版), 2016, 44(5): 386-392. 

[21] 陈益苞, SUBHASH RAKHEJA, 上官文斌. 罐体横截面形状对液罐车侧倾稳定性影响分析[J]. 振动与冲击, 2016, 35(6): 146-151. 

[22] 谢忠辉. 浅谈液体罐式运输车罐体结构稳定性[J]. 机电工程技术, 2018, 47(11): 208-211. 

[23] 袁萃, 杨青真, 陈立海. 飞行器特性曲线拟合与飞行仿真研究[J]. 计算机仿真, 2008, 25(2): 53-56, 156. 

[24] 胡亚男, 陶世群. 飞行器曲线显示中的数据处理方法及实现[J]. 火力与指挥控制, 2004, 29(4): 103-107. 

[25] 郭日修. 潜艇结构设计的现状和展望[J]. 海军工程学院学报, 1992, (4): 78-85.

[26] 袁渊, 肖正扬, 杨继新.超椭圆曲线特性及其在曲面拟合中的应用[J].大连轻工业学院学报, 2004, 23(4):2287-2290.