[email protected]

国际临床研究杂志

International Journal of Clinical Research

您当前位置:首页 > 精选文章

International Journal of Clinical Research. 2022; 6: (3) ; 10.12208/j.ijcr.20220090 .

Research progress on β- Tricalcium phosphate composite in stomatological tissue engineering
β-磷酸三钙复合材料在口腔组织工程领域的研究进展

作者: 章璐淼, 刘蕾, 孙玉, 李恒, 孙玉华 *

徐州医科大学口腔医学院 江苏徐州

徐州医科大学附属医院口腔科 江苏徐州

*通讯作者: 孙玉华,单位:徐州医科大学附属医院口腔科 江苏徐州;

收录截图(CNKI-Scholar)

引用本文: 章璐淼, 刘蕾, 孙玉, 李恒, 孙玉华 β-磷酸三钙复合材料在口腔组织工程领域的研究进展[J]. 国际临床研究杂志, 2022; 6: (3) : 8-12.
Published: 2022/5/27 17:57:37

摘要

β-磷酸三钙(β-tricalcium phosphate,β-TCP)复合材料作为一种组织工程支架材料,因其良好的生物相容性、生物降解性、骨传导性成为了组织工程领域的研究热点。随着口腔医学以及材料学的发展,β-TCP在口腔医学领域中的研究取得了较大进展,显示出了广阔的应用前景。该文主要总结了β-磷酸三钙复合材料在口腔组织工程领域的研究进展,并从β-TCP的制备与特性、作为支架材料的基础研究、在口腔领域的临床应用等方面进行归纳综述,旨在加深对β-磷酸三钙复合材料的认识,为其进一步的科学研发和临床应用提供参考依据。

关键词: β-磷酸三钙;组织工程;口腔医学

Abstract

β-Tricalcium phosphate (β-tricalcium phosphate, β-TCP) composite ,as a tissue engineering scaffold material, has become a research hotspot in the medical field because of its good biocompatibility, biodegradability and bone conductivity. With the development of Stomatology and materials science, The research of β-TCP in the field of Stomatology has made great progress and shows a broad application prospect. This paper mainly summarizes research progress of β-TCP composites in stomatological tissue engineering,including the preparation and characteristics of β-TCP, the basic research as scaffold material and its clinical application in the field of oral cavity in order to deepen the understanding of β-TCP composites, which provides a reference basis for its further scientific research and clinical application.

Key words: β-Tricalcium Phosphate; Tissue Engineering; Stomatology

参考文献 References

[1] 范克山. 富含β-磷酸三钙的煅烧骨填充材料修复牙槽骨缺损的临床效果评价[D].青岛大学,2017.

[2] 邹芬. β-磷酸三钙(β-TCP)基多孔骨修复体的功能化构建及研究[D].华南理工大学,2016.

[3] Jung K W, Lee S Y, Choi J W, et al. A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption behavior and mechanisms for the removal of copper(II) from aqueous media [J]. 2019, 369:529.

[4] Ros-Tárraga P, Mazón P, Rodríguez M, et al. Novel Resorbable and Osteoconductive Calcium Silicophosphate Scaffold Induced Bone Formation [J]. 2016, 9 (9). 

[5] Sugiyama T, Akiyama S, Ikoma T J M A. Calcium phosphate with high specific surface area synthesized by a reverse micro-emulsion method [J]. 2016, 1 (11):723.

[6] Helal M H, Hendawy H D, Gaber R A, et al. Osteogenesis ability of CAD-CAM biodegradable polylactic acid scaffolds for reconstruction of jaw defects [J]. 2018, 121:S0022391318303354.

[7] Joshi M K, Lee S, Tiwari A P, et al. Integrated design and fabrication strategies for biomechanically and biologically functional PLA/β-TCP nanofiber reinforced GelMA scaffold for tissue engineering applications [J]. 2020, 164. 

[8] Hojo S, Bamba N, Kojima K, et al. Examination of β-TCP/collagen composite in bone defects without periosteum in dogs: a histological and cast model evaluation [J]. 2020, 108 (4):578.

[9] Gokcekaya O, Ueda K, Ogasawara K, et al. In vitro evaluation of Ag-containing calcium phosphates: Effectiveness of Ag-incorporated β-tricalcium phosphate [J]. 2017, 75 (JUN.):926.

[10] Sandler A B, Scanaliato J P, Raiciulescu S, et al. Bone Morphogenic Protein for Upper Extremity Fractures: A Systematic Review [J]. 2021:155894472199080.

[11] Xiao W L, Jia K N, Yu G, et al. Outcomes of bone morphogenetic protein-2 and iliac cancellous bone transplantation on alveolar cleft bone grafting: A meta-analysis [J]. J Plast Reconstr Aesthet Surg, 2020, 73 (6):1135.

[12] Mariscal G, Nuez J H, Barrios C, et al. A meta-analysis of bone morphogenetic protein-2 versus iliac crest bone graft for the posterolateral fusion of the lumbar spine [J]. J Bone Miner Metab, 2020, 38 (1):54.

[13] Ishack S, Mediero A, Wilder T, et al. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2 [J]. 2017, 105 (2):366.

[14] Mikai A, Ono M, Tosa I, et al. BMP-2/β-TCP Local Delivery for Bone Regeneration in MRONJ-Like Mouse Model [J]. 2020, 21 (19). 

[15] Lytle E J, Lawless M H, Paik G, et al. The minimally effective dose of bone morphogenetic protein in posterior lumbar interbody fusion: a sy stematic review and meta-analysis [J]. Spine J, 2020, 20 (8):1286.

[16] Tavelli L, Ravidà A, Barootchi S, et al. Recombinant Human Platelet–Derived Growth Factor: A Systematic Review of Clinical Findings in Oral Regenerative Procedures [J]. 2020, 6 (3):238008442092135.

[17] Fukuba S, Akizuki T, Matsuura T, et al. Effects of combined use of recombinant human fibroblast growth factor-2 and β-tricalcium phosphate on ridge preservation in dehiscence bone defects after tooth extraction: A split-mouth study in dogs [J]. J Periodontal Res, 2021, 56 (2):298.

[18] Shen Z, Tsao H, LaRue S, et al. Vascular Endothelial Growth Factor and/or Nerve Growth Factor Treatment Induces Expression of Dentino genic, Neuronal, and Healing Markers in Stem Cells of the Apical Papilla [J]. J Endod, 2021, 47 (6):924.

[19] Chu W, Wang X, Gan Y, et al. Screen-enrich-combine circulating system to prepare MSC/β-TCP for bone repair in fractures with depre ssed tibial plateau [J]. Regen Med, 2019, 14 (6):555.

[20] Almansoori A A, Kwon O J, Nam J H, et al. Mesenchymal stem cells and platelet-rich plasma-impregnated polycaprolactone-β tricalcium phosphate b io-scaffold enhanced bone regeneration around dental implants [J]. Int J Implant Dent, 2021, 7 (1):35.

[21] Hashemi S, Mohammadi Amirabad L, Farzad-Mohajeri S, et al. Comparison of osteogenic differentiation potential of induced pluripotent stem cells and buccal fat p ad stem cells on 3D-printed HA/β-TCP collagen-coated scaffolds [J]. Cell Tissue Res, 2021, 384 (2):403.

[22] Motamedian S R, Tabatabaei F S, Akhlaghi F, et al. Response of Dental Pulp Stem Cells to Synthetic, Allograft, and Xenograft Bone Scaffolds [J]. Int J Periodontics Restorative Dent, 2017, 37 (1):49.

[23] Su F, Liu S S, Ma J L, et al. Enhancement of periodontal tissue regeneration by transplantation of osteoprotegerin- engineered perio dontal ligament stem cells [J]. Stem Cell Res Ther, 2015, 6:22.

[24] Chen K, Xiong H, Xu N, et al. Chondrogenic potential of stem cells from human exfoliated deciduous teeth in vitro and in vivo [J]. Acta Odontol Scand, 2014, 72 (8):664.

[25] FUJITA A, FUKUMOTO C, HASEGAWA T, et al. Morphometric and histomorphometric evaluations of high-purity macro/microporous beta-tricalcium phosphate in maxillary sinus floor elevation: preliminary results on a retrospective, multi-center, observational study [J]. 2021, 21(1): 448.

[26] 胡爽,李春梅,张帅源,等.口腔修复膜和β-磷酸三钙治疗颌骨囊肿术后骨缺损的临床价值[J].华西口腔医学杂志,2020,38(05):541-545.

[27] Cao C, Wang F, Wang E B, et al. [Application of β-TCP for bone defect restore after the mandibular third molars extraction: A split mouth clinical trial] [J]. Beijing Da Xue Xue Bao, 2020, 52 (1):97.

[28] 吾尔古丽•吐生江,周建业,刘泽文,等.β-磷酸三钙联合联合重组人血小板源性生长因子BB治疗骨缺损疗效的Meta分析[J].甘肃科技,2021,37(06):153-158.

[29] Cao S, Han J, Sharma N, et al. In Vitro Mechanical and Biological Properties of 3D Printed Polymer Composite and β-Tricalcium Phosphate Scaffold on Human Dental Pulp Stem Cells [J]. Materials (Basel), 2020, 13 (14). 

[30] Chao Y L, Lin L D, Chang H H, et al. Preliminary evaluation of BMP-2-derived peptide in repairing a peri-implant critical size defect: A c anine model [J]. J Formos Med Assoc, 2021, 120 (5):1212.