[email protected]

物理科学与技术研究

Physical Sience and Technical Research

您当前位置:首页 > 精选文章

Physical Sience and Technical Research. 2022; 2: (1) ; 10.12208/j.pstr.20220001 .

Research on 1550 nm Near-Infrared Organicupconversion light-emitting devices
1550 nm近红外有机上转换发光器件研究

作者: 张浩林, 李智, 吴双红, 刘辉 *

电子科技大学光电科学与工程学院 四川成都

成都信息工程大学光电工程学院 四川成都

*通讯作者: 刘辉,单位:成都信息工程大学光电工程学院 四川成都;

引用本文: 张浩林, 李智, 吴双红, 刘辉 1550 nm近红外有机上转换发光器件研究[J]. 物理科学与技术研究, 2022; 2: (1) : 1-5.
Published: 2022/2/14 10:02:19

摘要

近红外上转换发光器件作为新红外成像技术的未来选择具有重要的研究意义。近红外上转换发光器件由光探测单元和发光单元组成,可将人眼不可视的近红外光转换为可见光,其探测波长受到光探测单元限制。本论文研究制备了1550nm近红外波段的有机上转换发光器件,实现了5.77%的功率转换效率。

关键词: 上转换;近红外;发光二极管;上转换效率

Abstract

Near-infrared upconversion light-emitting devices have important research significance as the future choice of new infrared imaging technology. The near-infrared upconversion light-emitting device is composed of a light detection unit and a light-emitting unit, which can convert near-infrared light that is invisible to the human eye into visible light, and its detection wavelength is limited by the light detection unit. In this work, an organic near-infrared upconversion light-emitting device capable of detecting the 1550nm near-infrared band was prepared and achieved a power upconversion efficiency of 5.77%.

Key words: Upconversion; Near-infrared; Light-emitting diode; Upconversion efficiency

参考文献 References

[1] Liu H, Allardrd L, Buchanan M, et al. Pixelless infrared imaging device[J]. Electron. Lett.1997, 33(5):379-380.

[2] Ban D, Han S, Lu Z H, et al. Near-infrared to visible light optical upconversion by directtandem integration of organic light-emitting diode and inorganic photodetector [J]. Appl. Phys.Lett. 2007, 90(9): 093108.

[3] Chen J, Ban D, Feng X, et al. Enhanced efficiency in near-infrared inorganic/organic hybridoptical upconverter with an embedded mirror [J]. J. Appl. Phys. 2008, 103(10): 103112.

[4] Liu S W, Lee C C, Yuan C H, et al. Transparent organic upconversion devices for near-infrared sensing [J]. Adv. Mater. 2015, 27(7): 1217-1222.

[5] Li N, Eedugurala N, Leem D S, et al. Organic Upconversion Imager with Dual Electronic and Optical Readouts for Shortwave Infrared Light Detection [J]. Adv. Funct. Mater. 2021,31(16), 2100565.

[6] Kim D Y, Song D W, Chopra N, et al. Organic infrared upconversion device[J]. Adv. Mater. 2010, 22, 2260.

[7] Tachibana H, Aizawa N, Hidaka Y, et al. Tunable Full-Color Electroluminescence from All-Organic Optical Upconversion Devices by Near-Infrared Sensing [J]. ACS Photonics 2017, 4(2): 223-227.

[8] Shih C J, Li Y Z, Li M Z, et al. Transparent organic upconversion device targeting high- grade infrared visual image [J]. Nano Energy 2021, 86, 106043.

[9] S. P. Wu, Y. Kang, T. L. Liu et al. Formation of charge-transfer-complex in organic:metal oxides systems [J]. Appl. Phys. Lett. 2013, 102, 163304.

[10] Wu S H, Lo M F, Chen Z Y, et al. Simple near-infrared photodetector based on charge transfer complexes formed in molybdenum oxide doped N,N’-di(naphthalene-1-yl)-N, N’-diphenyl-benzidine [J]. Phys. Status Solidi RRL 2012, 6(3), 129-131.

[11] Tang X, Tao Y, Liu H, et al. Phenothiazinen- Dimesitylarylborane Based Thermally Activated Delayed Fluorescence: High-Performance Non-doped OLEDs With Reduced Efficiency Roll-Off at High Luminescence [J]. Front. Chem. 2019, 7, 373.

[12] Yang D Z, Zhou X K, Ma D G, et al. Near infrared to visible light organic up-conversion devices with photon- to-photon conversion efficiency approaching 30% [J]. Mater. Horiz., 2018, 5, 874-882.