Physical Sience and Technical Research
Physical Sience and Technical Research. 2021; 1: (1) ; 10.12208/j.pstr.20210003 .
总浏览量: 2558
东南大学 江苏南京
中国科学院深圳先进技术研究院 广东深圳
湖北大学 湖北武汉
*通讯作者: 贾婷婷,单位:中国科学院深圳先进技术研究院 广东深圳;
万物互联、人工智能等新兴技术对运算和存储提出了更高的要求,然而传统金属氧化物半导体场效应晶体管(MOSFET)由于玻尔兹曼限制其亚阈值摆幅(SS)无法降至60 mV/dec以下。因此其性能即将到达瓶颈而摩尔定律也面临着失效的风险。负电容场效应晶体管(NCFET)可以突破玻尔兹曼限制并将SS降低到 60 mV/dec 以下,从而极大地改善了晶体管的开关电流比,有效解决了晶体管低功耗和高性能之间的矛盾。为晶体管特征尺寸的缩减和摩尔定律继续前进提供了选择。基于FeFET的非易失性存储器也为雪崩式增长的存储需求提供了解决方案。本文分析总结了近两年以来关于NCFET的代表性研究进展,为进一步研究提供参考。本文首先介绍了当前MOSFET发展所面临的问题以及解决办法;接着分析总结了铁电材料的基本性质和分类,并阐述了铁电材料负电容的物理机制和NCFET工作原理; 然后对近年来NCFET结构,沟道材料,铁电材料,存储器和电路设计这五个研究方向的代表性研究进展进行简要介绍;最后作出总结与展望。
The Internet of thing, artificial intelligence and other emerging technologies put forward higher requirements for computing and storage. However, subthreshold amplitude (SS) of traditional metal oxide semiconductor field effect transistor (MOSFET) cannot be reduced to sub 60 mV/ dec, which is termed as Boltzmann’s tyranny. Thus, its performance is about to reach a bottleneck and Moore's Law is at risk of failure. The negative capacitance field effect transistor (NCFET) can break down the Boltzmann’s tyranny and reduce SS to sub 60 mV/ dec, which greatly improves the ratio of On-current to Off current (Ion/Ioff) and effectively solves the contradiction between low power consumption and high performance of transistors. Non-volatile memory based on FeFET also provides splendid solution to the explosive increase of storage requirements. Thus, NCFET is one of the most competitive candidates to reduce the feature size of transistor and help Moore's law to continue its way. In this paper, the representative research progresses on NCFET in recent two years are analyzed and summarized, which provides reference for further research. This paper first introduces the problems of current MOSFET development and several potential solutions to them; Secondly, the basic properties and classification of ferroelectric materials are summarized and introduced. Thirdly, the physical mechanism of negative capacitance of ferroelectric materials and the principle of NCFET are described. Then, the representative research progresses in NCFET structure, channel materials, ferroelectric materials, memory and circuit design in recent years are briefly introduced, respectively. Finally, a summary and outlook are made.
[1] K. Lee, S. Kim, J.-H. Lee, D. Kwon, and B.-G. Park, "Analysis on Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance of Ferroelectric-Gate Field-Effect Transistor Memory,"Ieee Electr Device L, vol. 41, no. 8, pp. 1197-1200, 2020.
[2] C. Jin, T. Saraya, T. Hiramoto, and M. Kobayashi, "Physical Mechanisms of Reverse DIBL and NDR in FeFETs with Steep Subthreshold Swing,"Ieee J Electron Devi, vol. 8, pp. 429-434, 2020.
[3] C. Jin, T. Saraya, T. Hiramoto, and M. Kobayashi, "Physical Mechanisms of Reverse DIBL and NDR in FeFETs with Steep Subthreshold Swing,"Ieee J Electron Devi, vol. 8, pp. 429-434, 2020.
[4] H. Amrouch et al., "Impact of Variability on Processor Performance in Negative Capacitance FinFET Technology," (in English), Ieee T Circuits-I, vol. 67, no. 9, pp. 3127-3137, Sept 2020. Electron Dev, vol. 68, no. 3, pp. 1202-1206, 2021.
[5] A. Sharma and K. Roy, "1T Non-Volatile Memory Design Using Sub-10nm Ferroelectric FETs,"Ieee Electr Device L, vol. 39, no. 3, pp. 359-362, 2018
[6] J. R. Zhou et al., "Incomplete Dipoles Flipping Produced Near Hysteresis-Free Negative Capacitance Transistors," (in English), Ieee Electr Device L, vol. 40, no. 2, pp. 329-332, Feb 2019..
[7] 肖长江,窦志强, "钙钛矿铁电体在超高压下的相变研究进展,"人工晶体学报, vol. 47, no. 01, pp. 194-199, 2018.
[8] L. Qiao et al., "Observation of negative capacitance in antiferroelectric PbZrO3 Films,"Nat Commun, vol. 12, no. 1, p. 4215, Jul 9 2021.
[9] 陈大凯, 蔡苇, 周创,吴红迪,符春林, "Ca_3Ti_2O_7杂化非本征铁电体的制备及其掺杂改性研究进展,"电子元件与材料, vol. 40, no. 10, pp. 983-989+1027, 2021.
[10] W. W. Gao et al., "Room-Temperature Negative Capacitance in a Ferroelectric Dielectric Super lattice Heterostructure," (in English), Nano Lett, vol. 14, no. 10, pp. 5814-5819, Oct 2014
[11] Y. K. Lin et al., "Spacer Engineering in Negative Capacitance FinFETs," (in English), Ieee Electr Device L, vol. 40, no. 6, pp. 1009-1012, Jun 2019.
[12] V. Chauhan, D. P. Samajdar, N. Bagga, and A. Dixit, "A Novel Negative Capacitance FinFET with Ferroelectric Spacer: Proposal and Investigation,"IEEE Trans Ultrason Ferroelectr Freq Control, vol. PP, Jul 19 2021.
[13] O. Prakash, N. Chauhan, A. Gupta, and H. Amrouch, "Performance Optimization of Analog Circuits in Negative Capacitance Transistor Technology,"Microelectron J, vol. 115, 2021.
[14] K. Lee, J.-H. Bae, S. Kim, J.-H. Lee, B.-G. Park, and D. Kwon, "Ferroelectric-Gate Field-Effect Transistor Memory With Recessed Channel,"Ieee Electr Device L, vol. 41, no. 8, pp. 1201-1204, 2020
[15] S. Wang et al., "Design of negative capacitance tunneling field effect transistor with dual-source U-shape channel, super-steep subthreshold swing and large on-state current,"Superlattice Microst, vol. 155, 2021.
[16] X. Wang et al., "Impact of Charges at Ferroelectric/ Interlayer Interface on Depolarization Field of Ferroelectric FET With Metal/Ferroelectric/ Interlayer/Si Gate-Stack," Ieee T Electron Dev, vol. 67, no. 10, pp. 4500-4506, 2020..
[17] T. Yu, W. Lü, Z. Zhao, P. Si, and K. Zhang, "Effect of different capacitance matching on negative capacitance FDSOI transistors,"Microelectron J, vol. 98, 2020.
[18] M.-Y. Kao et al., "Optimization of NCFET by Matching Dielectric and Ferroelectric Nonuniformly Along the Channel,"Ieee Electr Device L, vol. 40, no. 5, pp. 822-825, 2019.
[19] 李珍, "负电容场效应晶体管器件模型及仿真研究," 硕士, 电子科技大学, 2020.
[20] 李珍,翟亚红, "铁电负电容场效应晶体管器件的研究,"压电与声光, vol. 41, no. 06, pp. 782-785, 2019.
[21] W.-X. You, P. Su, and C. Hu, "Evaluation of NC-FinFET Based Subsystem-Level Logic Circuits,"Ieee T Electron Dev, vol. 66, no. 4, pp. 2004-2009, 2019.
[22] "Electron Devices; Reports on Electron Devices Findings from University of California Provide New Insights (Proposal for Capacitance Matching In Negative Capacitance Field-effect Transistors),"Electronics Newsweekly, 2019.
[23] 潘奥霖, 杜爱民, "氧化铪基铁电场效应晶体管存储器研究进展,"半导体技术, vol. 46, no. 10, pp. 745-753+800, 2021.
[24] P. Wang et al., "Drain–Erase Scheme in Ferroelectric Field-Effect Transistor—Part I: Device Characterization," Ieee T Electron Dev, vol. 67, no. 3, pp. 955-961, 2020.
[25] W.-D. Liu, Z.-Y. Huang, J. Ma, Z.-W. Zheng, and C.-H. Cheng, "Impact of Series-Connected Ferroelectric Capacitor in HfO₂-Based Ferroelectric Field-Effect Transistors for Memory Application,"Ieee J Electron Devi, vol. 8, pp. 1076-1081, 2020.
[26] P. Lu et al., "Source/Drain Extension Doping Engineering for Variability Suppression and Performance Enhancement in 3-nm Node FinFETs,"Ieee T Electron Dev, vol. 68, no. 3, pp. 1352-1357, 2021.
[27] H. Mulaosmanovic et al., "Investigation of Accumulative Switching in Ferroelectric FETs: Enabling Universal Modeling of the Switching Behavior,"Ieee T Electron Dev, vol. 67, no. 12, pp. 5804-5809, 2020.
[28] W. Shim and S. Yu, "Technological Design of 3D NAND-Based Compute-in-Memory Architecture for GB-Scale Deep Neural Network,"Ieee Electr Device L, vol. 42, no. 2, pp. 160-163, 2021.
[29] W. Deng, H. Yang, and D. Wu, "Low-Frequency Noise Analysis of the Optimized Post High-k Deposition Annealing in FinFET Technology,"Ieee T Electron Dev, vol. 68, no. 3, pp. 1202-1206, 2021.
[30] A. I. Khan et al., "Negative Capacitance in Short-Channel FinFETs Externally Connected to an Epitaxial Ferroelectric Capacitor," (in English), Ieee Electr Device L, vol. 37, no. 1, pp. 111-114, Jan 2016
[31] 周家伟 徐礼磊 葛凡等, "负电容场效应晶体管研究进展,"ELECTRONICS WORLD・探索与观察, vol. 23, no. 12, pp.27-28, 2020.
[32] C. Liu et al., "Simulation-based study of negative- capacitance double-gate tunnel field-effect transistor with ferroelectric gate stack,"Jpn J Appl Phys, vol. 55, no. 4S, 2016.
[33] A. J. Tan et al., "Experimental Demonstration of a Ferroelectric HfO2-Based Content Addressable Memory Cell,"Ieee Electr Device L, vol. 41, no. 2, pp. 240-243, 2020.
[34] K. Jang, T. Saraya, M. Kobayashi, and T. Hiramoto, "I-on/I-off ratio enhancement and scalability of gate-all- around nanowire negative-capacitance FET with ferroelectric HfO2," (in English), Solid State Electron, vol. 136, pp. 60-67, Oct 2017.
[35] H. Mulaosmanovic et al., "Investigation of Accumulative Switching in Ferroelectric FETs: Enabling Universal Modeling of the Switching Behavior,"Ieee T Electron Dev, vol. 67, no. 12, pp. 5804-5809, 2020.
[36] P. Wang et al., "Investigating Ferroelectric Minor Loop Dynamics and History Effect—Part II: Physical Modeling and Impact on Neural Network Training,"Ieee T Electron Dev, vol. 67, no. 9, pp. 3598-3604, 2020.
[37] 吴迪, 徐永珍, 姜毅,刘会刚, "低亚阈值摆幅铝掺杂二氧化铪铁电材料金属-铁电层-绝缘层-半导体场效晶体管研究(英文),"南开大学学报(自然科学版), vol. 54, no. 02, pp. 52-57, 2021.
[38] H. Mulaosmanovic et al., "Impact of Read Operation on the Performance of HfO2-Based Ferroelectric FETs," Ieee Electr Device L, vol. 41, no. 9, pp. 1420-1423, 2020.
[39] M. Kobayashi and T. Hiramoto, "On device design for steep-slope negative-capacitance field-effect-transistor operating at sub-0.2V supply voltage with ferroelectric HfO2 thin film,"Aip Adv, vol. 6, no. 2, 2016.
[40] J. Y. Kim, M.-J. Choi, and H. W. Jang, "Ferroelectric field effect transistors: Progress and perspective,"Apl Mater, vol. 9, no. 2, 2021.
[41] 李俊, 杨阳, 吴振华, 杨文, 李成,陈松岩, "基于低势垒FM/I/n-Si磁隧道结的优化自旋注入效率和增强的Spin MOSFET信号,"第十二届全国硅基光电子材料及器件研讨会, 中国福建厦门, 2017, p. 2.
[42] "Dirac-source field-effect transistors as energy- efficient,high-performance electronic switches," Science Foundation in China, vol. 26, no. 03, p. 46, 2018.
[43] J.-H. Bae et al., "Highly Scaled, High Endurance, Ω-Gate, Nanowire Ferroelectric FET Memory Transistors,"Ieee Electr Device L, vol. 41, no. 11, pp. 1637-1640, 2020.
[44] T. Yu, W. Lü, Z. Zhao, P. Si, and K. Zhang, "Negative drain-induced barrier lowering and negative differential resistance effects in negative-capacitance transistors," Microelectron J, vol. 108, 2021.
[45] 肖永光, "铁电场效应晶体管的保持性能与负电容效应研究," 博士, 湘潭大学, 2013.
[46] Y. H. Liang, Z. M. Zhu, X. Q. Li, S. K. Gupta, S. Datta, and V. Narayanan, "Mismatch of Ferroelectric Film on Negative Capacitance FETs Performance," (in English), Ieee T Electron Dev, vol. 67, no. 3, pp. 1297-1304, Mar 2020.
[47] Y. Liu et al., "Investigation of the Impact of Externally Applied Out-of-Plane Stress on Ferroelectric FET,"Ieee Electr Device L, vol. 42, no. 2, pp. 264-267, 2021.
[48] E. Ko, H. Lee, Y. Goh, S. Jeon, and C. Shin, "Sub-60-mV / decade Negative Capacitance FinFET With Sub-10-nm Hafnium-Based Ferroelectric Capacitor," (in English), Ieee J Electron Devi, vol. 5, no. 5, pp. 306-309, Sep 2017.
[49] A. D. Gaidhane, A. Verma, and Y. S. Chauhan, "Study of multi-domain switching dynamics in negative capacitance FET using SPICE model,"Microelectron J, vol. 115, 2021.
[50] E. Ko, J. W. Lee, and C. Shin, "Negative Capacitance FinFET With Sub-20-mV/decade Subthreshold Slope and Minimal Hysteresis of 0.48 V," (in English), Ieee Electr Device L, vol. 38, no. 4, pp. 418-421, Apr 2017.
[51] R. Rasool, D. Najeeb ud, and G. M. Rather, "RETRACTED ARTICLE: An analytical model for the effects of the variation of ferroelectric material parameters on the minimum subthreshold swing of NC-FETs,"J Comput Electron, vol. 18, no. 4, pp. 1207-1213, 2021.
[52] S. Semwal and A. Kranti, "Insights into unconventional behaviour of negative capacitance transistor through a physics-based analytical model,"Semicond Sci Tech, vol. 36, no. 9, 2021.
[53] H. Mulaosmanovic et al., "Interplay Between Switching and Retention in HfO2-Based Ferroelectric FETs,"Ieee T Electron Dev, vol. 67, no. 8, pp. 3466-3471, 2020.
[54] M. Lederer et al., "Integration of Hafnium Oxide on Epitaxial SiGe for p-type Ferroelectric FET Application,"Ieee Electr Device L, vol. 41, no. 12, pp. 1762-1765, 2020.
[55] C.-J. Sun et al., "Comprehensive Study of Inversion and Junctionless Ge Nanowire Ferroelectric HfZrO Gate-All-Around FETs Featuring Steep Subthreshold Slope with Transient Negative Capacitance,"ECS Journal of Solid State Science and Technology, vol. 10, no. 6, 2021.
[56] F. I. Sakib, F. E. Mullick, S. Shahnewaz, S. Islam, and M. Hossain, "Influence of device architecture on the performance of negative capacitance MFMIS transistors,"Semicond Sci Tech, vol. 35, no. 2, 2020.
[57] D. Kwon et al., "Negative Capacitance FET With 1.8-nm-Thick Zr-Doped HfO2 Oxide," (in English), Ieee Electr Device L, vol. 40, no. 6, pp. 993-996, Jun 2019.
[58] T. Ali et al., "A Study on the Temperature-Dependent Operation of Fluorite-Structure-Based Ferroelectric HfO2 Memory FeFET: Pyroelectricity and Reliability,"Ieee T Electron Dev, vol. 67, no. 7, pp. 2981-2987, 2020.
[59] 王步冉, 李珍, 谭欣,翟亚红, "铁电负电容可测试性的仿真研究,"微电子学, vol. 49, no. 05, pp. 724-728, 2019.
[60] L. Liu, X. Hou, H. Zhang, J. Wang, and P. Zhou, "Ferroelectric field-effect transistors for logic and in-situ memory applications,"Nanotechnology, vol. 31, no. 42, p. 424007, Jun 29 2020
[61] 吴春香,仲崇贵, "二维铁电材料的第一性原理研究进展,"电子科技, vol. 34, no. 10, pp. 81-86, 2021.
[62] 殷泽润, "有机铁电聚合物薄膜制备及性能特性研究," 硕士, 华东师范大学, 2020e Electr Device L, vol. 28, no. 8, pp. 743-745, 2007.
[63] F. I. Sakib, M. A. Hasan, and M. Hossain, "Exploration of Negative Capacitance in Gate-All-Around Si Nanosheet Transistors," (in English), Ieee T Electron Dev, vol. 67, no. 11, pp. 5236-5242, Nov 2020
[64] K. Karda, A. Jain, C. Mouli, and M. A. Alam, "An anti-ferroelectric gated Landau transistor to achieve sub-60 mV/dec switching at low voltage and high speed,"Appl Phys Lett, vol. 106, no. 16, 2015.
[65] 周久人, "基于铁电材料的负电容场效应晶体管研究," 博士, 西安电子科技大学, 2019.
[66] A. Lu, X. Peng, Y. Luo, and S. Yu, "Benchmark of the Compute-in-Memory-Based DNN Accelerator With Area Constraint,"Ieee T Vlsi Syst, vol. 28, no. 9, pp. 1945-1952, 2020.
[67] K. Tamersit, "A computational study of short-channel effects in double-gate junctionless graphene nanoribbon field-effect transistors,"J Comput Electron, vol. 18, no. 4, 2019.
[68] S.-Y. Lee, C.-C. Lee, Y.-S. Kuo, S.-W. Li, and T.-S. Chao, "Ultrathin Sub-5-nm Hf₁₋ₓZrₓO₂ for a Stacked Gate-all-Around Nanowire Ferroelectric FET With Internal Metal Gate,"Ieee J Electron Devi, vol. 9, pp. 236-241, 2021.
[69] 赵雯等, "22nm FDSOI工艺SRAM单粒子效应的重离子实验研究,"原子能科学技术, pp. 1-9.
[70] "Electron Devices; Reports on Electron Devices Findings from University of California Provide New Insights (Proposal for Capacitance Matching In Negative Capacitance Field-effect Transistors),"Electronics Newsweekly, 2019.
[71] W.-X. You, P. Su, and C. Hu, "A New 8T Hybrid Nonvolatile SRAM With Ferroelectric FET,"Ieee J Electron Devi, vol. 8, pp. 171-175, 2020.
[72] 林翠, 白刚, 李卫,高存法, "外延PbZr_(0.2)Ti_(0.8)O_3薄膜负电容的应变调控,"物理学报, vol. 70, no. 18, pp. 318-326, 2021.
[73] V. Chauhan and D. P. Samajdar, "Recent Advances in Negative Capacitance FinFETs for Low-Power Applications: A Review,"IEEE Trans Ultrason Ferroelectr Freq Control, vol. 68, no. 10, pp. 3056-3068, Oct 2021.
[74] D. Madadi and A. A. Orouji, "Investigation of 4H-SiC gate-all-around cylindrical nanowire junctionless MOSFET including negative capacitance and quantum confinements,"The European Physical Journal Plus, vol. 136, no. 7, 2021.ron Dev, vol. 66, no. 6, pp. 2538-2543, Jun 2019.
[75] K. Tamersit, M. K. Q. Jooq, and M. H. Moaiyeri, "Analog/RF performance assessment of ferroelectric junctionless carbon nanotube FETs: A quantum simulation study,"Physica E: Low-dimensional Systems and Nanostructures, vol. 134, 2021.
[76] S. E. Huang, C. L. Yu, and P. Su, "Investigation of Fin-Width Sensitivity of Threshold Voltage for InGaAs and Si Negative-Capacitance FinFETs Considering Quantum-Confinement Effect," (in English), Ieee T Electron Dev, vol. 66, no. 6, pp. 2538-2543, Jun 2019.
[77] H. Agarwal et al., "Proposal for Capacitance Matching in Negative Capacitance Field-Effect Transistors," (in English), Ieee Electr Device L, vol. 40, no. 3, pp. 463-466, Mar 2019.
[78] W. Huang et al., "Investigation of negative DIBL effect for ferroelectric-based FETs to improve MOSFETs and CMOS circuits,"Microelectron J, vol. 114, 2021.
[79] N. Zagni, P. Pavan, and M. A. Alam, "Two-dimensional MoS2 negative capacitor transistors for enhanced (super-Nernstian) signal-to-noise performance of next-generation nano biosensors,"Appl Phys Lett, vol. 114, no. 23, 2019.
[80] X. Chen et al., "The Impact of Ferroelectric FETs on Digital and Analog Circuits and Architectures,"IEEE Design & Test, vol. 37, no. 1, pp. 79-99, 2020.
[81] R. Rajaei, M. M. Sharifi, A. Kazemi, M. Niemier, and X. S. Hu, "Compact Single-Phase-Search Multistate Content-Addressable Memory Design Using One FeFET/Cell,"Ieee T Electron Dev, vol. 68, no. 1, pp. 109-117, 2021.
[82] J. Huo et al., "Investigation on negative capacitance FinEFT beyond 7 nm node from device to circuit," Microelectron J, vol. 116, 2021.
[83] H. Eslahi, T. J. Hamilton, and S. Khandelwal, "Small signal model and analog performance analysis of negative capacitance FETs,"Solid State Electron, vol. 186, 2021.
[84] Y. Xiang et al., "Compact Modeling of Multidomain Ferroelectric FETs: Charge Trapping, Channel Percolation, and Nucleation-Growth Domain Dynamics,"Ieee T Electron Dev, vol. 68, no. 4, pp. 2107-2115, 2021.
[85] "<1.3 Future Scaling_ Where Systems and Technology Meet.pdf>."
[86] J.-D. Chen et al., "Recent research progress of ferroelectric negative capacitance field effect transistors,"Acta Phys Sin-Ch Ed, vol. 69, no. 13, 2020.
[87] 田志,谢欣云, "应力技术改善CMOS器件性能研究进展,"中国集成电路, vol. 21, no. 05, pp. 26-33+38, 2012.
[88] C. Zacharaki et al., "Depletion induced depolarization field in Hf1−xZrxO2 metal-ferroelectric-semiconductor capacitors on germanium,"Appl Phys Lett, vol. 116, no. 18, 2020.
[89] M. Harada, M. Takahashi, S. Sakai, and T. Morie, "A time-domain analog weighted-sum calculation circuit using ferroelectric-gate field-effect transistors for artificial intelligence processors,"Jpn J Appl Phys, vol. 59, no. 4, 2020.
[90] W. Shim and S. Yu, "Technological Design of 3D NAND-Based Compute-in-Memory Architecture for GB-Scale Deep Neural Network,"Ieee Electr Device L, vol. 42, no. 2, pp. 160-163, 2021.
[91] F. Mo et al., "Low-Voltage Operating Ferroelectric FET with Ultrathin IGZO Channel for High-Density Memory Application,"Ieee J Electron Devi, vol. 8, pp. 717-723, 2020.
[92] S. Jindal, S. K. Manhas, S. K. Gautam, S. Balatti, A. Kumar, and M. Pakala, "Investigation of Gate-Length Scaling of Ferroelectric FET,"Ieee T Electron Dev, vol. 68, no. 3, pp. 1364-1368, 2021.
[93] "<Split-Gate FeFET (SG-FeFET) with Dynamic Memory Window Modulation for Non-Volatile Memory and Neuromorphic Applications.pdf>."
[94] J. Min and C. Shin, "MFMIS Negative Capacitance FinFET Design for Improving Drive Current," Electronics- Switz, vol. 9, no. 9, 2020.
[95] M.-Y. Kao, S. Salahuddin, and C. Hu, "Negative capacitance enables GAA scaling VDD to 0.5 V,"Solid State Electron, vol. 181-182, 2021.
[96] S. Yadav, P. Upadhyay, B. Awadhiya, and P. N. Kondekar, "Design and Analysis of Improved Phase-Transition FinFET Utilizing Negative Capacitance,"Ieee T Electron Dev, vol. 68, no. 2, pp. 853-859, 2021.
[97] "<Guidelines for Ferroelectric FET Reliability Optimization_ Charge Matching.pdf>."
[98] K.-W. Chen et al., "Pulse-Mediated Electronic Tuning of the MoS2–Perovskite Ferroelectric Field Effect Transistors,"ACS Applied Electronic Materials, vol. 2, no. 12, pp. 3843-3852, 20201.