参考文献 References
[1] Muñoz‐Vargas, M. A., González‐Gordo, S., Palma, J. M. and Corpas, F. J. (2020). Inhibition of NADP‐malic enzyme activity by H2S and NO in sweet pepper (Capsicum annuum L.) fruits. Physiologia Plantarum, 168(2): 278-288.
.
[2] GOP. (2016). Fruit, vegetables and condiments (Ministry of National Food Security & Research Economic) statistics of Pakistan. pp. 1-77.
.
[3] Dias, J. S. (2012). Nutritional quality and health benefits of vegetables: A review. Food and Nutrition Sciences, 3: 1354-1374.
.
[4] Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud S., Ihsan M. Z., Alharby, H., Wu, C., Wang, D. and Huang H. (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science, 8: 1147.
.
[5] Hanson, P.M., Ghen J. and Kuo. G. (2002). Gene action and heritability of high temperature fruit set in tomato line CL5915. HortScience, 37: 172-175.
.
[6] [6]Hasanuzzaman, M., Nahar, K., Alam, M. M., & Fujita, M. (2012). Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat ('Triticum aestivum' L.) seedlings by modulating the antioxidant defense and glyoxalase system. Australian Journal of Crop Science, 6(8), 1314 -1323.
.
[7] Shinozaki, K. and Yamaguchi-Shinozaki, K. (2007) Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58, 221–227.
.
[8] Moreno, A. A. and Orellana, A. (2011). The physiological role of the unfolded protein response in plants. Biological Research, 44: 75-80.
.
[9] Waraich, E. A., Ahmad, R., Halim A. and Aziz, T. (2012). Alleviation of temperature stress by nutrient management in crop plants: A review. Journal of Soil Science and Plant Nutrition, 12: 221-244.
.
[10] [10]Barnabas, B., Jager K. and Feher, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environment, 31: 11-38.
.
[11] Rasheed, R, A. Wahid, M. Farooq, I. Hussain and S.M.A. Basra. (2011). Role of proline and glycine betaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regulators, 65(1): 35-45.
.
[12] Kim, W. C., Choi, X. Z., Pak, W. H., Lee Z. W. and Lee, Q. L. (2016). Morphological, physiological and biochemical responses of gerbera cultivars to heat stress. Korean Society for Horticultural Science, 34: 1-14.
.
[13] Zhang, J., Li, D. M., Gao, Y., Yu, B., Xia, C.X. and Bai. J.G. (2012). Pretreatment with 5- aminolevulinic acid mitigates heat stress of cucumber leaves. Biologia Plantarum, 56(4): 780-784.
.
[14] Shaheen, M.R., Ayyub, C.M., Amjad M. and Waraich, E.A. (2015). Morpho-physiological evaluation of tomato genotypes under high temperature stress conditions. Journal of Science of Food and Agriculture, 96: 2698-2704.
.
[15] Hussain, T., Ayyub, C.M., Ahmad, I., Ali, I., Mustfa, Z., Anwar, A., Ahmad, A., Latif, S. and Iqbal, T. (2019). Mitigation of adverse effects of heat stress in chillies by using glycine betaine. International Journal of Biological Science, 15(2), 1-10.
.
[16] [16]Farkhondeh, R., Nabizadeh, E. and Jalilnezhad, N. (2012). Effect of salinity stress on proline content, membrane stability and water relations in two sugar beet cultivars. International Journal of Agricultural Sciences, 2: 385-392.
.
[17] Steel, R. G. D., Torrie, J. H. and Dickey, D. A. (1997). Principles and Procedures of Statistics: A Biometrical Approach. 3rd Ed. McGraw Hill Co., New York., USA.
.
[18] Ali, M., Ayyub, C. M. Amjad, M. and Ahmad R. (2019). Evaluation of thermo-tolerance potential in cucumber genotypes under heat stress. Pakistan Journal of Agricultural Sciences, 56(1): 53-61.
.
[19] Prasad, P. V. V., Boote, K. J. and Allen, L. H. (2006). Adverse high temperature effect on pollen viability, seed set, seed yield and harvest index of grain sorghum (Sorghum bicolor L. Moench) are more severe at elevated carbon dioxide due to higher tissues temperatures. Agricultural and Forest Meteorology, 139: 237-251.
.
[20] Dieleman, J. A., & Meinen, E. (2007). Interacting effects of temperature integration and light intensity on growth and development of single-stemmed cut rose plants. Scientia Horticulturae, 113(2), 182-187.
.
[21] Vollenweider, P. and M.S. Gunthardt-Goerg. (2005). Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environmental Pollution, 137: 455-465.
.
[22] Wang, H. and A. Yarnauchi. (2006). Growth and function of roots under abiotic stress in soils. In: Huang B. Ed, Plant-Environment Interactions. 3rd ed. GRC Press. Pp. 271-320.
.
[23] Yin, C., Wang, X., Duan. B., Luo J. and Li, C. (2005). Early growth, dry matter allocation and water use efficiency of two Sympatric populus species as affected by water stress. Environmental and Experimental Botany, 53:315-322.
.
[24] Porter, J. R. (2005). Rising temperatures are likely to reduce crop yields. Nature, 75(7048): 174-436.
.
[25] Rajeswara, B.R. 2002. Biomass yield, essential oil yield and oil composition of rose-scented geranium (Pelargonium species) as influenced by row spacing and intercropping with corn mint (Mantha avensis L.). Industrial Crops and Products, 16:133–144.
.
[26] Singh, M. 1999. Effect of soil moisture regime, nitrogen and modified urea materials on yield and quality of geranium (Pelargonium graveolens) grown on alfisols. The Journal of Agricultural Science, 133: 203-207.
.
[27] Rahbarian, R., Khavari-Nejad, R., Ganjeali, A., Bagheri A. and Najafi, F. (2011). Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biologica Cracoviensia Series Botanica, 53(1): 47-56.
.
[28] Gunes, A., Cicek, N., Ina, A., Alpaslan, M., Eraslan, F., Guneri E. and Guzelordu, T. (2006). Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre and post anthesis stages and its relations with nutrient uptake and efficiency. Plant, Soil and Environment, 52: 368-376.
.
[29] Ashraf, M. (2006). Tolerance of some potential forage grasses from arid regions of Pakistan to salinity and drought. In Biosaline Agriculture and Salinity Tolerance In Plants (pp. 15- 27). Birkhäuser Basel.
.
[30] Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29: 185-212.
.
[31] Chaves, M. M., & Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of experimental botany, 55(407), 2365-2384.
.
[32] Munns, R. (2002). Comparative physiology of salt and water stress. Tropical Agriculture, 25:239-250.
.
[33] Guilioni, L., Wery and, J. and Lecoeur, J. (2003). High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate. Functional Plant Biology, 30:1151-1164.
.
[34] Rahmani, A., Shoae-Hassani, A., Keyhanvar, P., Kheradm D. and Darbandi-Azar, A. (2013). Dehydroepiandrosterone stimulates nerve growth factor and brain derived neurotrophic factor in cortical neurons. Advances in Pharmacological Sciences, 3: 506191.
.
[35] Kostaki, K. I., Coupel-Ledru, A., Bonnell, V. C., Gustavsson, M., Sun, P., Mclaughlin, F. J., ... & Franklin, K. A. (2020). Guard cells integrate light and temperature signals to control stomatal aperture. Plant Physiology, 182(3), 1404-1419.
.
[36] Hipolito, M., Tomasa, M., Sebastia, M., Flexasa, J., Hernandeza, E., Rosselloa, J., Poub, A., Escalonaa, J. and Botaa, J. (2015). From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. The Crop Journal, 3: 220-228.
.