参考文献 References
[1] 李有观. 金属粉末: 另类零碳燃料[J].自然与科技,2011;
.
[2] 张炜, 张为华, 周星, 等. 镁基水反应金属燃料[M].北京: 国防工业出版社,2013;1–13
.
[3] 杰克·史帝芬. 金属燃料[J].资源与人居环境,2011;04
: 40-41.
[4] Li S, Lin Z, Wang T, et al. The effects of aluminum size on the combustion characteristics of high energy propellants with higher burning rate[C] // Aiaa/asme/sae/asee Joint Propulsion Conference & Exhibit, 2006.
.
[5] Chong F, Shufen L. Experimental research of the effects of superfine aluminum powders on the combustion characteristics of NEPE propellants[J].Propellants Explosives Pyrotechnics,2002;27
(1)
: 34-38.
[6] 唐有根. 金属燃料电池新技术[J].功能材料信息,2012;02
(9)
: 21-25.
[7] 刘平安, 王良, 王璐, 王革. 铝冰发动机内流场的数 值 计 算 [J].固 体 火 箭 技 术,2017;40
(04)
: 425-431.
[8] 王金云, 杨在林, 王孟军, 等. 美军无人水下潜航器技术发展综述[J].飞航导弹,2015;
(11)
: 54-58.
[9] Ohkura Y, Rao PM, Zheng X. Flash ignition of Al nanoparticles: mechanism and applications [J].Combustion & Flame,2011;158
(12)
: 2544-2548.
[10] Rai A, Park K, Zhou L, Zachariah MR. Understanding the mechanism of aluminum nanoparticle oxidation [J].Combustion Theory and Modelling,2006;10
(5)
: 843-859.
[11] Buckmaster J, Jackson TL. Modelling the combustion of a sub-micron aluminium particle [J].Combustion Theory and Modelling,2014;18
(2)
: 242-260.
[12] Sun Y, Wang Q, Wu Y, et al. Numerical simulation of the combustion of nano-aluminum in carbon dioxide[J].Acta Astronautica,2017;139
: 428-434.
[13] Glorian J, Catoire L, Gallier S, et al. Gas-surface thermochemistry and kinetics for aluminum particle combustion[J].Proceedings of the Combustion Institute,2015;35
(2)
: 2439-3446.
[14] Glorian J, Gallier S, Catoire L. On the role of heterogeneous reactions in aluminum combustion[J].Combustion and Flame,2016;168
: 378-392.
[15] Afzalabadi A, Poorfar AK, Bidabadi, et al. Study on hybrid combustion of aero- suspensions of boron-aluminum powders in a quiescent reaction medium[J].Journal of Loss Prevention in the Process Industries,2017;49
: 645-651.
[16] Han DH, Shin JS, Sung HG. A detailed flame structure and burning velocity analysis of aluminum dust cloud combustion using the Eulerian-Lagrangian method[J].Proceedings of the Combustion Institute,2017;36
: 2299-2307.
[17] Bidabadi M, Poorfar AK, Wang S, et al. A comparative study of different burning time models for the combustion of aluminum dust particles[J].Applied Thermal Engineering,2016;105
: 474-482.
[18] Bidabadi M, Bozorg MV, Bordbar V. A three-dimensional simulation of discrete combustion of randomly dispersed micron-aluminum particle dust cloud and applying genetic algorithm to obtain the flame front[J].Energy,2017;140
: 804-817.
[19] Sundaram DS, Yang V. Effects of entrainment and agglomeration of particles on combustion of nano-aluminum and water mixtures[J].Combustion and Flame,2014;161
: 2215-2217.
[20] Sundaram DS, Yanga V, Zarko VE. Combustion of nano aluminum particles (Review)[J].Combustion,Explosion, and Shock Waves,2015;51
: 173-196.
[21] Sundaram DS, Puri P, Yang V. A general theory of ignition and combustion of nano and micron-sized aluminum particles[J].Combustion and Flame,2016;169
: 94-109.
[22] Corcoran AL, Hoffmann VK, Dreizin EL. Aluminum particle combustion in turbulent flames[J].Combustion and Flame,2013;160
(718)
: 724.
[23] Gallier S, Sibe F, Orlandi O. Combustion response of an aluminum droplet burning in air [J].Proceedings of the Combustion Institute,2011;33
(2)
: 1949-1956.
[24] Levitas V I. Burn time of aluminum nanoparticles:Strong effect of the heating rate and melt-dispersion mechanism[J].Combustion and Flame,2009;156
(2)
: 543-546.
[25] Wang WJ, Yang ZL. Theoretical study on combustion of non-spherical particles in nano aluminized propellant in air[J].Materials Research Express,2019;6
: 065064.
[26] Wang WJ, Yang ZL. Experimental study on the effect of non-spherical particles on steady combustion in nano-aluminized propellant in air[J].Materials Research Express,2019;6
: 115054.
[27] Wang WJ, Yang ZL, Wang MJ. Effect of non-spherical particles on burning behaviors during aluminum combustion[J].Particuology,2019;doi.org/10.1016/j.partic.2019.11.004
.
[28] 郑邯勇. 铝水推进系统的现状与发展前景[J].舰船科学技术,2003;25
(5)
: 24-25.
[29] 缪万波, 夏智勋, 郭健, 等. 金属水反应冲压发动机 理 论 性 能 计 算 与 分 析 [J].推 进 技 术,2005;26
(06)
: 563-566.
[30] 李是良, 张炜, 朱慧,等. 水冲压发动机用金属燃料 的 研 究 进 展 [J].火 炸 药 学 报,2006;29
(06)
: 69-73.
[31] 刘康, 罗平, 熊灿, 等. 冲压发动机用水反应金属燃料的研究进展[J].热加工工艺,2018;47
(10)
: 18-21.
[32] 胡凡, 张为华, 夏智勋, 等. 水反应金属燃料发动机比冲性能与燃烧室长度设计理论研究[J].固体火箭技术,2007;30
(1)
: 12-16.
[33] 胡凡. 镁基燃料水冲压发动机理论分析与试验研究[D].国防科学技术大学博士论文,2008;
.
[34] 胡凡, 张为华, 江振宇. 江振宇. 金属燃料/水冲压发动机构型试验[J].推进技术,2012;1
(33)
: 125-130.
[35] Yang Y, He M. Theoretical investigation of thermodynamic performance for a ramjet based on a magnesium-water reaction[J] .Engineering for the Maritime Environment,2009;224
: 61-72.
[36] 韩超, 夏智勋, 胡建新, 等. 一次进水角度对水冲压发动机比冲性能影响研究[J].固体火箭技术,2009;32
(5)
: 496-499.
[37] 李是良. 水冲压发动机用镁基水反应金属燃料一次燃烧性能研究[D].国防科学技术大学博士论文,2009;11
.
[38] 黄利亚, 夏智勋, 胡建新. 水冲压发动机地面直连试验技术研究[J].推进技术,2009;30
(6)
: 722-726.
[39] 黄利亚, 夏智勋, 张为华, 等. 水冲压发动机试验水燃比选择方法[J].航空学报,2010;31
(9)
: 1740-1745.
[40] 黄利亚. 镁基水冲压发动机内部燃烧过程与燃烧组织方法研究[D].国防科学技术大学博士论文,2010;10
.
[41] 刘巍. 固体燃料冲压发动机燃烧组织技术研究[D].国防科学技术大学博士论文,2010;
.
[42] 朱千稳, 刘冰, 夏智勋, 等. 喷嘴特性对水冲压发动 机 性 能 的 影 响 [J].导 弹 与 航 天 运 载 技 术,2010;
(6)
: 10-13.
[43] 周星. 镁基水反应金属燃料与水反应特性研究[D].国防科学技术大学博士论文,2010;10
.
[44] Yang Y, He M. Theoretical investigation on water/metal fuel ramjet motor- thermodynamic cycle and thermodynamic calculation[J].Journal of Aerospace Power,2010;25
(5)
: 1129-1138.
[45] 王宁飞, 苏万兴, 李军伟, 等. 固体火箭发动机中铝粉燃烧研究概述[J].固体火箭技术,2011;34
(1)
: 61-66.
[46] 韩超, 夏智勋, 胡建新, 等. 水反应金属燃料在水蒸气环境下的稳态燃烧特性[J].固体火箭技术,2011;34
(1)
: 75-78.
[47] Zou MS, Yang RJ, Guo XY, et al. The preparation of Mg-based hydro-reactive materials and their reactive properties in seawater[J].International Journal of Hydrogen Energy,2011;36
(11)
: 6478-6483.
[48] Zou MS, Guo XY, Huang HT, et al. Preparation and characterization of hydro-reactive Mg-Al mechanical alloy materials for hydrogen production in seawater[J].Journal of Power Sources,2012;219
: 60-64.
[49] 黄海涛, 邹美帅, 郭晓燕,等. 高固体含量水反应金属燃料推进剂的力学性能[J].北京理工大学学报,2013;33
(9)
: 901-905.
[50] 黄海涛, 邹美帅, 郭晓燕, 等. 高固体含量水反应金属燃料推进剂力学性能试验研究(II) [J].北京理工大学学报,2014;34
(7)
: 757-762.
[51] Liu Z, Li S, Liu M, et al. Experimental investigation of the combustion products in an aluminised solid propellant[J].Acta Astronautica,2017;133
: 136-144.
[52] Wang WJ, Yang ZL, Wang MJ. Investigation of nozzle two-phase flow characteristics for nanometer aluminum powder combustion in a metal fuel motor[J].Powder Technology,2018;339
: 446-458.
[53] 王革, 何登军, 刘平安. 铝冰固体推进剂燃速特性研究[J].固体火箭技术,2016;39
(03)
: 358-363.
[54] 刘平安, 王良, 王璐. 固体火箭发动机零维两相燃烧 室 压 强 计 算 方 法 研 究 [J].推 进 技 术,2018;39
(02)
: 317-325.
[55] 刘平安, 王良. 铝冰发动机两相内弹道计算[J].哈尔滨工程大学学报,2018;39
(08)
: 13-1327.
[56] Miller T, Herr J. Green rocket propulsion by reaction of Al and Mg powders and water [C] //Aiaa/asme/sae/asee Joint Propulsion Conference & Exhibit. 2013.
.
[57] Miller TF, Walter JL, Kiely DH. A next-generation AUV energy system based on aluminum-seawater combustion[C]// Workshop on Autonomous Underwater Vehicles.2002.
.
[58] Miller TF. A high-pressure, continuous-operation cyclone separator using a water-generated flow restriction [J].Powder Technology,2002;122
(1)
: 61-68.
[59] Risha GA, Evans BJ, Boyer E, et al. Nano-sized aluminum and boron-based solid-fuel characterization in a hybrid rocket engine [C] .AIAA ,2003–4593;
.
[60] Kalpakli B, Acar EB, Ulas A. Improved combustion model of boron particles for ducted rocket combustion chambers [J].Combustion and Flame,2017;179
(267)
: 279.
[61] King MK. Aluminum combustion in a solid rocket motor environment [J].Proceedings of the Combustion Institute,2009;32
(2)
: 2107-2114.
[62] Elbasuney S, Fahd A, Mostafa HE. Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture[J].Fuel ,2017;208
: 296-304.
[63] Gnanaprakash K, Chakravarth SR, Sarathi R. Combustion mechanism of composite solid propellant sandwiches containing nano-aluminium[J].Combustion and Flame,2017;182
: 64-75.
[64] Chen Y, Guildenbecher DR, Hoffmeister KNG, et a. Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry [J].Combustion and Flame,2017;182
: 225-237.
[65] Wang WJ, Yang ZL, Wang MJ. Numerical and experimental studies on nozzle two-phase flow characteristics of nanometer-scale iron powder metal uel motor [J].Advanced Powder Technology,2018;29
: 2753-2764.
[66] Beach DB, Sumpter BG. Running on iron: metal nanoparticles show promise as future fuels [J].Oak Ridge National Laboratory Review,2006;39
: 26.
[67] Sumpter BG, Beach DB, Labinov SD, et al. Solid-state combustion of metallic nanoparticles:new possibilities for an alternative energy carrier[J].Journal of Energy Resources Technology,2007;129
(1)
: 29-32.
[68] Bergthorson JM, Goroshin S, Soo M J, et al. Direct combustion of recyclable metal fuels for zero-carbon heat and power[J].Applied Energy,2015;160
: 368-382.
[69] Schiemann M, Fischer P, Bergthorson J. Iron particles as carbon-neutral fuel in spray roasting reactors[J].Digital proceedings of the 8th European Combustion Meeting,2017;4
: 487-492.
[70] Julien P, Whiteley S, Goroshin S, et al. Flame structure and particle-combustion regimes in premixed methane–iron–air suspensions[J].Proceedings of the Combustion Institute,2015;35
(2)
: 2431-2438.
[71] Wen D, Song P, Zhang K, et al. Thermal oxidation of iron nanoparticles and its implication for chemical-looping combustion[J].Journal of Chemical Technology and Biotechnology,2011;86
(3)
: 375-380.
[72] Gan Y, Lim YS , Qiao L. Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations[J].Combustion and Flame,2012;159
(4)
: 1732-1740.
[73] Mandilas C, Karagiannakis G, Konstandopoulos AG,et al. Study of oxidation and combustion characteristics of iron nanoparticles under idealized and enginelike conditions [J].Energy Fuels,2016;30
: 4318-4330.
[74] Mehta RN, Chakraborty M, Parikh PA. Nanofuels:Combustion, engine performance and emissions[J].Fuel,2014;120
: 91-97.
[75] 杨丽, 朱燕群, 王智化, 等. 微纳米金属铁粉的燃烧特性试验研究[J].浙江大学学报,2010;44
(08)
: 1562-1566.
[76] 何丹丹, 金晶, 路遥, 等. 纳米铁粉燃烧特性研究[J].上海理工大学报,2012;34
(01)
: 88-92.
[77] 高文静, 金晶, 曾武勇. 纳米铁粉的燃烧动力学模型 研 究 [J].科 学 技 术 与 工 程,2013;33
(13)
: 9808-9812.
[78] Wang WJ, Yang ZL. Effect of non-spherical particles on nozzle two-phase flow loss in nano-iron powder metal fuel motor[J].Aerospace Science and Technology,2019;91
: 372-381.