Journal of Engineering Research
Journal of Engineering Research. 2025; 4: (9) ; 10.12208/j.jer.20250418 .
总浏览量: 63
湖南电气职业技术学院 湖南湘潭
*通讯作者: 宋知非,单位:湖南电气职业技术学院 湖南湘潭;
电力5G切片资源分配需满足不同电力业务的差异化需求,而传统分配方法难以应对动态变化的网络环境与复杂业务场景。深度强化学习框架通过智能体与环境的持续交互,可实现资源分配策略的自主优化。该框架将电力业务需求、网络负载状态作为状态输入,以资源利用率最大化与业务QoS保障为目标,通过深度神经网络拟合价值函数,动态调整计算、存储、带宽等资源的分配方案。其具备较强的环境适应性与决策时效性,能有效解决切片资源竞争、负载不均衡等问题,为电力5G网络的高效运行提供技术支撑,对推动电力系统数字化转型具有重要意义。
The resource allocation of power 5G slices needs to meet the differentiated requirements of various power services, while traditional allocation methods struggle to cope with dynamically changing network environments and complex service scenarios. The deep reinforcement learning framework can realize the autonomous optimization of resource allocation strategies through continuous interaction between agents and the environment. This framework takes power service requirements and network load status as state inputs, with the goals of maximizing resource utilization and ensuring service QoS. It dynamically adjusts the allocation schemes of computing, storage, bandwidth and other resources by fitting the value function through deep neural networks. It has strong environmental adaptability and decision-making timeliness, which can effectively solve problems such as slice resource competition and load imbalance. It provides technical support for the efficient operation of power 5G networks and is of great significance for promoting the digital transformation of power systems.
[1] 张导,秦骁,周之楠,等.基于深度强化学习的5G电力虚拟专用光网络切片时延优化算法研究[J].半导体光电,2024, 45(06):977-985.
[2] 李明锋.基于切片的电力5G虚拟专网组网研究[J].长江信息通信,2023,36(02):218-221.
[3] 吴维农,莫婷,赵妍妍,等.5G电力虚拟专网和数字孪生相结合的系统架构和构建[J].半导体光电,2023,44(05): 803-810.
[4] 李锦煊,王维.基于智能电网的5G网络切片资源优化分配模型构建及仿真[J].自动化与仪器仪表,2021,(11):36-39+44.
[5] 郭枳邑.电力5G网络资源分配与QoS保障关键技术研究[D].华北电力大学(北京),2022.
[6] 于浩,汪筱巍,王韬,等.基于SDN与NFV的电力5G网络切片差异化资源分配方案[J].电测与仪表,2021,58(09): 89-95.
[7] 王子坤.基于机器学习的电力通信网切片资源分配与脉冲噪声削减方法[D].南京理工大学,2021.
[8] 郭娘容.基于网络流量分析的5G切片管理系统研究与实现[D].广东工业大学,2022.