International Journal of Clinical Research
International Journal of Clinical Research. 2025; 9: (12) ; 10.12208/j.ijcr.20250571 .
总浏览量: 77
重庆市中医院心血管病科 重庆
*通讯作者: 芦茜,单位:重庆市中医院心血管病科 重庆;
高血压是环境和遗传因素共同作用的结果,PM2.5可致高血压发生进展是近年研究的热点,同时孕期或父源PM2.5暴露对血压及心血管系统的影响越来越受到人们的关注,其机制可能涉及氧化应激、宫内环境不良、表观遗传等跨代遗传学。本文重点就PM2.5对高血压的影响、孕期PM2.5暴露对子代高血压的影响、父源性PM2.5暴露对子代高血压的影响以及可能的表观遗传机制进行综述,为明确PM2.5导致高血压的发病机制提供理论基础,同时也为高血压的个体化治疗提供新的研究思路。
Hypertension is a result of the combined effects of environmental and genetic factors. The progression of hypertension caused by PM2.5 has been a hot topic in recent studies, while the impact of prenatal or paternal PM2.5 exposure on blood pressure and cardiovascular systems are increasingly attracted public attention. The mechanisms may involve transgenerational inheritance through oxidative stress, adverse intrauterine environments, DNA methylation, lncRNAs, and so on. This article focuses on reviewing the effects of PM2.5 on hypertension, including its impact on offspring's hypertension during pregnancy, paternal PM2.5 exposure, and potential epigenetic mechanisms. It aims to provide a theoretical foundation for clarifying the pathogenesis of PM2.5-induced hypertension and offer new research perspectives for personalized hypertension treatment.
[1] GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol, 2020 Dec 22;76(25): 2982-3021.
[2] GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol, 2021 Oct; 20(10): 795-820.
[3] Cao N, Lan C, Chen C, Xu Z, Luo H, Zheng S, Gong X, Ren H, Li Z, Qu S, Yu C, Yang J, Jose PA, Chen Y, Wu G, Hu C, Yu J, Zeng C. Prenatal Lipopolysaccharides Exposure Induces Transgenerational Inheritance of Hypertension. Circulation. 2022 Oct 4;146(14): 1082-1095.
[4] Kawarazaki W, Fujita T. Kidney and epigenetic mechanisms of salt-sensitive hypertension. Nat Rev Nephrol. 2021 May;17(5): 350-363.
[5] Hu C, Tao Y, Deng Y, Cai Q, Ren H, Yu C, Zheng S, Yang J, Zeng C. Paternal long-term PM2.5 exposure causes hypertension via increased renal AT1R expression and function in male offspring. Clin Sci (Lond), 2021 Nov 26;135(22): 2575-2588.
[6] Zhu W, Al-Kindi SG, Rajagopalan S, Rao X. Air Pollution in Cardio-Oncology and Unraveling the Environmental Nexus: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2024 Jun 18;6(3): 347-362.
[7] Fuks KB, Weinmayr G, Basagaña X, Gruzieva O, Hampel R, Oftedal B, Sørensen M, Wolf K, Aamodt G, Aasvang GM, Aguilera I, Becker T, Beelen R, Brunekreef B, Caracciolo B, Cyrys J, Elosua R, Eriksen KT, Foraster M, Fratiglioni L, Hilding A, Houthuijs D, Korek M, Künzli N, Marrugat J, Nieuwenhuijsen M, Östenson CG, Penell J, Pershagen G, Raaschou-Nielsen O, Swart WJR, Peters A, Hoffmann B. Long-term exposure to ambient air pollution and traffic noise and incident hypertension in seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). Eur Heart J, 2017, 38(13): 983-990.
[8] Zhang S, Qian ZM, Chen L, Zhao X, Cai M, Wang C, Zou H, Wu Y, Zhang Z, Li H, Lin H. Exposure to Air Pollution during Pre-Hypertension and Subsequent Hypertension, Cardiovascular Disease, and Death: A Trajectory Analysis of the UK Biobank Cohort. Environ Health Perspect, 2023 Jan;131(1): 17008.
[9] Huang K, Yang X, Liang F, Liu F, Li J, Xiao Q, Chen J, Liu X, Cao J, Shen C, Yu L, Lu F, Wu X, Zhao L, Wu X, Li Y, Hu D, Huang J, Liu Y, Lu X, Gu D. Long-Term Exposure to Fine Particulate Matter and Hypertension Incidence in China. Hypertension, 2019, 73(6): 1195–1201.
[10] Sagheer U, Al-Kindi S, Abohashem S, Phillips CT, Rana JS, Bhatnagar A, Gulati M, Rajagopalan S, Kalra DK. Environmental Pollution and Cardiovascular Disease: Part 1 of 2: Air Pollution. JACC Adv, 2023 Dec 28;3(2):100805.
[11] Chen R, Li H, Cai J, Wang C, Lin Z, Liu C, Niu Y, Zhao Z, Li W, Kan H. Fine particulate air pollution and the expression of microRNAs and circulating cytokines relevant to inflammation, coagulation, and vasoconstriction. Environ Health Perspect, 2018 Jan 17;126(1): 017007.
[12] Nilsson EE, Sadler-Riggleman I, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease. Environ Epigenet, 2018 Jul 17;4(2):dvy016.
[13] Hagemann E, Silva D T, Davis J A, Gibson L Y, Prescott S L. Developmental Origins of Health and Disease (DOHaD): The importance of life-course and transgenerational approaches. Paediatr Respir Rev. 2021 Dec;40:3-9.
[14] Been JV, Kramer BW, Zimmermann LJ. In utero and early-life conditions and adult health and disease. N Engl J Med, 2008 Oct 2;359(14):1523-1524.
[15] Sherman SB, Sarsour N, Salehi M, Schroering A, Mell B, Joe B, Hill JW. Prenatal androgen exposure causes hypertension and gut microbiota dysbiosis. Gut Microbes, 2018;9(5): 400-421.
[16] Tain YL, Hsu CN. Interplay between maternal nutrition and epigenetic programming on offspring hypertension. J Nutr Biochem, 2024 May;127: 109604.
[17] Ponzio BF, Carvalho MH, Fortes ZB, do Carmo Franco M. Implications of maternal nutrient restriction in transgenerational programming of hypertension and endothelial dysfunction across F1-F3 offspring. Life Sci. 2012 Apr 20;90(15-16): 571-577.
[18] Master JS, Zimanyi MA, Yin KV, Moritz KM, Gallo LA, Tran M, Wlodek ME, Black MJ. Transgenerational left ventricular hypertrophy and hypertension in offspring after uteroplacental insufficiency in male rats. Clin Exp Pharmacol Physiol, 2014 Nov;41(11):884-890.
[19] Ye Z, Lu X, Deng Y, Wang X, Zheng S, Ren H, Zhang M, Chen T, Jose PA, Yang J, Zeng C. In utero exposure to fine particulate matter causes hypertension due to impaired renal dopamine D1 receptor in offspring. Cell Physiol Biochem, 2018, 46(1): 148-159.
[20] Soubry A. POHaD: why we should study future fathers. Environmental Epigenetics, 2018, 4(2): dvy007.
[21] Sun J, Teng M, Zhu W, Leung KMY, Wu F. Paternal Inheritance Is an Important, but Overlooked, Factor Affecting the Adverse Effects of Microplastics and Nanoplastics on Subsequent Generations. J Agric Food Chem, 2023 Jan 18;71(2): 991-993.
[22] Liu J, Shi J, Hernandez R, Li X, Konchadi P, Miyake Y, Chen Q, Zhou T, Zhou C. Paternal phthalate exposure-elicited offspring metabolic disorders are associated with altered sperm small RNAs in mice. Environ Int. 2023 Feb;172:107769.
[23] Gong Y, Xue Y, Li X, Zhang Z, Zhou W, Marcolongo P, Benedetti A, Mao S, Han L, Ding G, Sun Z. Inter- and Transgenerational Effects of Paternal Exposure to Inorganic Arsenic. Adv Sci (Weinh), 2021 Feb 18;8(7): 2002715.
[24] Zhang J, Zeng X, Du X, Pan K, Song L, Song W, Xie Y, Zhao J. Parental PM2.5 Exposure-Promoted Development of Metabolic Syndrome in Offspring Is Associated With the Changes of Immune Microenvironment. Toxicol Sci, 2019 Aug 1;170(2): 415-426.
[25] 陈婷婷, 李晓龙, 芦茜, 王新全, 曾春雨, 周林. 父代大鼠长期暴露大气细 颗粒物对子代血压及尿钠排泄的影响. 第三军医大学学报, 2016, 38(4): 374-379.
[26] Bhat KP, Ümit Kaniskan H, Jin J, Gozani O. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat Rev Drug Discov, 2021 Apr;20(4): 265-286.
[27] Friso S, Carvajal CA, Fardella CE, Olivieri O. Epigenetics and arterial hypertension: the challenge of emerging evidence. Transl Res, 2015 Jan; 165(1): 154-165.
[28] Bai C, Su M, Zhang Y, Lin Y, Sun Y, Song L, Xiao N, Xu H, Wen H, Zhang M, Ping J, Liu J, Hui R, Li H, Chen J. Oviductal Glycoprotein 1 Promotes Hypertension by Inducing Vascular Remodeling Through an Interaction With MYH9. Circulation, 2022 Nov;146(18): 1367-1382.
[29] Bayoumy NMK, El-Shabrawi MM, Leheta OF, Omar HH. alpha-Adducin gene promoter DNA methylation and the risk of essential hypertension. Clin Exp Hypertens. 2017;39(8): 764-768.
[30] Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res, 2007 Mar 2;100(4): 520-526.
[31] Pei F, Wang X, Yue R, Chen C, Huang J, Huang J, Li X, Zeng C. Differential expression and DNA methylation of angiotensin type 1A receptors in vascular tissues during genetic hypertension development. Mol Cell Biochem, 2015 Apr;402(1-2): 1-8.
[32] Ghazi T, Naidoo P, Naidoo RN, Chuturgoon AA. Prenatal Air Pollution Exposure and Placental DNA Methylation Changes: Implications on Fetal Development and Future Disease Susceptibility. Cells. 2021 Nov 5;10(11): 3025.
[33] Ferrari L, Carugno M, Bollati V. Particulate matter exposure shapes DNA methylation through the lifespan. Clin Epigenetics. 2019 Aug 30;11(1): 129.
[34] Gao X, Huang J, Cardenas A, Zhao Y, Sun Y, Wang J, Xue L, Baccarelli AA, Guo X, Zhang L, Wu S. Short-Term Exposure of PM2.5 and Epigenetic Aging: A Quasi-Experimental Study. Environ Sci Technol, 2022 Oct 18;56(20): 14690 -14700.
[35] Wang C, Chen R, Cai J, Shi J, Yang C, Tse LA, Li H, Lin Z, Meng X, Liu C, Niu Y, Xia Y, Zhao Z, Kan H. Personal exposure to fine particulate matter and blood pressure: A role of angiotensin converting enzyme and its DNA methylation. Environ Int, 2016 Sep;94: 661-666.
[36] Cheng Y, Feng J, Wang J, Zhou Y, Bai S, Tang Q, Li J, Pan F, Xu Q, Lu C, Wu W, Xia Y. Alterations in sperm DNA methylation may as a mediator of paternal air pollution exposure and offspring birth outcomes: Insight from a birth cohort study. Environ Res, 2024 Mar 1;244:117941.
[37] Breton CV, Yao J, Millstein J, Gao L, Siegmund KD, Mack W, hitfield-Maxwell L, Lurmann F, Hodis H, Avol E, Gilliland FD. Prenatal Air Pollution Exposures, DNA Methyl Transferase Genotypes, and Associations with Newborn LINE1 and Alu Methylation and Childhood Blood Pressure and Carotid Intima-Media Thickness in the Children's Health Study. Environ Health Perspect, 2016 Dec;124(12):1905-1912.
[38] Bhat KP, Ümit Kaniskan H, Jin J, Gozani O. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat Rev Drug Discov, 2021 Apr;20(4): 265-286.
[39] Xiao H, Wen Y, Pan Z, Shangguan Y, Qin J, Tan Y, Jiang H, Li B, Zhang Q, Chen L, Wang H. Increased H3K27ac level ofACE mediates the intergenerational effect of low peak bone mass induced by prenatal dexamethasone exposure in male offspring rats. Cell Death Dis, 2018 May 29;9(6): 638.
[40] Zheng Y, Sanchez-Guerra M, Zhang Z, Joyce BT, Zhong J, Kresovich JK, Liu L, Zhang W, Gao T, Chang D, Osorio-Yanez C, Carmona JJ, Wang S, McCracken JP, Zhang X, Chervona Y, Díaz A, Bertazzi PA, Koutrakis P, Kang CM, Schwartz J, Baccarelli AA, Hou L. Traffic-derived particulate matter exposure and histone H3 modification: A repeated measures study. Environ Res, 2017 Feb;153: 112-119.
[41] Liu C, Xu J, Chen Y, Guo X, Zheng Y, Wang Q, Chen Y, Ni Y, Zhu Y, Joyce BT, Baccarelli A, Deng F, Zhang W, Hou L. Characterization of genome-wide H3K27ac profiles reveals a distinct PM2.5-associated histone modification signature. Environ Health. 2015 Aug 15;14:65.
[42] Ding R, Jin Y, Liu X, Zhu Z, Zhang Y, Wang T, Xu Y. H3K9 acetylation change patterns in rats after exposure to traffic-related air pollution. Environ Toxicol Pharmacol, 2016 Mar;42:170-175.
[43] Wu X, Pan B, Liu L, Zhao W, Zhu J, Huang X, Tian J. In utero exposure to PM2.5 during gestation caused adult cardiac hypertrophy through histone acetylation modification. J Cell Biochem. 2019 Mar;120(3): 4375-4384.
[44] Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, Hatzigeorgiou AG, Antonarakis SE. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet, 2007 Aug;81(2): 405-413.
[45] Romero DG, Plonczynski MW, Carvajal CA, Gomez-Sanchez EP, Gomez-Sanchez CE. Microribonucleic acid-21 increases aldosterone secretion and proliferation in H295R human adrenocortical cells. Endocrinology, 2008 May;149(5): 2477-2483.
[46] Bayoglu B, Yuksel H, Cakmak HA, Dirican A, Cengiz M. Polymorphisms in the long non-coding RNA CDKN2B-AS1 may contribute to higher systolic blood pressure levels in hypertensive patients. Clin Biochem, 2016 ul;49(10-11): 821- 827.
[47] Schlosser K, Hanson J, Villeneuve PJ, Dimitroulakos J, McIntyre L, Pilote L, Stewart DJ. Assessment of Circulating LncRNAs Under Physiologic and Pathologic Conditions in Humans Reveals Potential Limitations as Biomarkers. Sci Rep, 2016 Nov 18;6:36596.
[48] Wei X, Zhang Z, Gu Y, Zhang R, Huang J, Li F, He Y, Lu S, Wu Y, Zeng W, Liu X, Liu C, Liu J, Ao L, Shi F, Chen Q, Lin Y, Du J, Jin G, Xia Y, Ma H, Zheng Y, Huo R, Cao J, Shen H, Hu Z. Inter- and trans-generational impacts of real-world PM2.5 exposure on male-specific primary hypogonadism. Cell Discov, 2024 Apr 23;10(1): 44.
[49] Li S, Ma X, Xie J, Yan X, Sun W. MicroRNA-206, IL-4, IL-13, and INF- γ levels in lung tissue and plasma are increased by the stimulation of particulate matter with a diameter of ≤2.5μm, and are associated with the poor prognosis of asthma induced pulmonary arterial hypertension patients. Clin Exp Hypertens, 2021 Feb 17;43(2):181-188.
[50] Wang H, Wang T, Rui W, Xie J, Xie Y, Zhang X, Guan L, Li G, Lei Z, Schiffelers RM, Sluijter JPG, Xiao J. Extracellular vesicles enclosed-miR-421 suppresses air pollution (PM2.5 )-induced cardiac dysfunction via ACE2 signalling. J Extracell Vesicles, 2022 May;11(5):e12222.
[51] Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics, 2011 Aug;3(4):503-518.
[52] Jiang Y, Li J, Ren F, Ji C, Aniagu S, Chen T. PM2.5-induced extensive DNA methylation changes in the heart of zebrafish embryos and the protective effect of folic acid. Environ Pollut, 2019 Dec;255(Pt 3):113331.
[53] Saito T, Whatmore P, Taylor JF, Fernandes JMO, Adam AC, Tocher DR, Espe M, Skjærven KH. Micronutrient supplementation affects DNA methylation in male gonads with potential intergenerational epigenetic inheritance involving the embryonic development through glutamate receptor-associated genes. BMC Genomics, 2022 Feb 10;23(1):115.