Scientific Development Research
Scientific Development Research . 2025; 5: (7) ; 10.12208/j.sdr.20250275 .
总浏览量: 67
黑龙江林业职业技术学院 黑龙江牡丹江
*通讯作者: 王敏杰,单位:黑龙江林业职业技术学院 黑龙江牡丹江;
随着林业资源监测、生态环境评估、智慧林业管理等系统的数字化与联网化程度不断提高,网络攻击手段日益多样化和隐蔽化,传统的安全防护模式难以及时、准确地发现潜在威胁。渗透测试作为评估系统脆弱性的重要技术手段,在态势感知体系中扮演着核心角色。然而,不同来源、不同格式的渗透测试数据在融合分析过程中面临标准不统一、数据冗余和信息孤岛等问题,限制了预警模型的有效性。本研究结合数据融合技术与智能分析方法,构建适用于林业领域的威胁预警模型,以提升风险识别的准确度与响应速度,为林业网络安全保障提供技术支撑。
With the increasing degree of digitalization and network of forestry resource monitoring, ecological environment assessment, smart forestry management and other systems, network attack means becoming more and more diversified and concealed, and the traditional security protection model can hardly detect potential threats timely and accurately. Penetration testing, as an important technical means to evaluate vulnerability, plays a central role in the situation awareness system. However, in the process of data integration and analysis, penetration testing data from different sources and in different formats are facing such as inconsistent standards, data redundancy and information islands, which limits the effectiveness of the early warning model. In this study, data fusion technology and intelligent analysis method are combined to construct threat early warning model suitable for the forestry field, so as to improve the accuracy of risk identification and the speed of response, and to provide technical support for the security guarantee of network.
[1] 杨小漩. 人工智能在林业有害生物防治中的应用与效率提升研究[J].中国林业产业,2025,(05):107-108.
[2] 张颂.基于数据融合的森林地表凋落物含水率预测方法研究[D].东北林业大学,2024.
[3] 吴喜凯.基于WSN的林业土壤数据采集系统设计与实现[D].桂林理工大学,2023.
[4] 庞士军.基于双目视频数据融合的森林火灾监测研究[D].中南林业科技大学,2022.
[5] 孙晓宇.基于无人机影像与高程数据融合的煤矿矿区地物提取方法研究[D].北京林业大学,2021.
[6] 李健平.多源数据融合的低空无人机激光扫描平台自主定位定姿关键技术[D].武汉大学,2021.
[7] 陈东鹏.林业背包式激光雷达多传感器集成系统及数据融合的研究[D].东北林业大学,2021.
[8] 郑明智.基于数据融合技术的程控交换机温度无线监控系统研究[D].东北林业大学,2009.