Scientific Development Research
Scientific Development Research . 2025; 5: (7) ; 10.12208/j.sdr.20250270 .
总浏览量: 86
江苏省无锡市宜兴市宜能实业有限公司 江苏无锡
*通讯作者: 王华兵,单位:江苏省无锡市宜兴市宜能实业有限公司 江苏无锡;
基于深度学习的电力变压器故障预测与健康管理(PHM)系统,可突破传统方法在复杂工况下预测滞后、管理被动的局限,显著提升故障预测精度与健康管理效率。该系统依托分层架构与多功能模块协同,采集变压器多维度运行数据,通过深度学习算法完成特征提取、模式识别与故障预测模型构建,实现潜在故障提前预警;同时结合健康状态评估机制,为变压器全生命周期管理提供科学支撑。实践表明,系统能有效降低故障发生率与运维成本,保障电力系统稳定运行,对推动电力行业向智能化、高效化发展具有重要现实意义。
The Power Transformer Fault Prediction and Health Management (PHM) System based on deep learning overcomes the limitations of traditional methods, such as lagging prediction and passive management under complex operating conditions, thereby significantly improving fault prediction accuracy and health management efficiency. The system relies on a hierarchical architecture and collaborative multi-functional modules to collect multi-dimensional operational data from transformers. Through deep learning algorithms, it performs feature extraction, pattern recognition, and fault prediction model construction to achieve early warning of potential failures. At the same time, by integrating a health status evaluation mechanism, it provides scientific support for the entire life-cycle management of transformers. Practical results show that the system effectively reduces failure rates and maintenance costs, ensures the stable operation of the power system, and plays a crucial role in promoting the intelligent and efficient development of the power industry.
[1] 刘韧,夏玉娟. 电力变压器与电动汽车充电基础设施的共生关系及其驱动效应研究[J].中国设备工程,2025,(19): 16-18.
[2] 杨节. 基于深度学习的电力变压器接线错误自动识别方法[J].自动化应用,2025,66(19):130-132.
[3] 郭建涛. 油浸式电力变压器胶囊式储油柜运维方法研究[J].今日制造与升级,2025,(09):182-184.
[4] 高逸超,池一,张峻澄. 基于超高频局部放电传感的电力变压器在线监测系统研究[J].电气技术与经济,2025,(09): 203-205.
[5] 曾建生,王昭雷,安荣廷,等. 基于MIC-DBN的电力变压器故障诊断[J].工业控制计算机,2025,38(09):128-130 +163.
[6] 宗成功. 基于多源数据融合的电力变压器局部放电智能监测技术研究[J].电力设备管理,2025,(15):38-40.
[7] 钟达伟.基于深度学习的变压器故障诊断及状态评估[D].广东工业大学,2025.
[8] 宋晖. 电力变压器故障预测模型探析[J].电力设备管理,2025,(08):176-178.