[email protected]

科学发展研究

Scientific Development Research

您当前位置:首页 > 精选文章

Scientific Development Research . 2025; 5: (7) ; 10.12208/j.sdr.20250262 .

Students' competency gaps in ai-assisted translation and the transformation of translation teaching — an empirical study based on the MQM framework
AI辅助翻译下学生能力短板与教学转向——基于MQM框架的实证研究

作者: 秦雨 *

大连大学 辽宁大连

*通讯作者: 秦雨,单位:大连大学 辽宁大连;

引用本文: 秦雨 AI辅助翻译下学生能力短板与教学转向——基于MQM框架的实证研究[J]. 科学发展研究, 2025; 5: (7) : 20-24.
Published: 2025/11/20 10:30:24

摘要

本研究以某高校翻译专业58名三年级学生为研究对象,采用有无AI辅助交叉实验设计,通过基于多维质量评估模型(MQM)的深度文本对比分析与半结构式访谈,系统探究AI辅助翻译下学生能力短板和AI使用问题。研究结果显示:两种实验条件下,学生在语境识别、句式调整及语用风格处理等方面均存在明显局限;学生对AI存在不同程度的过度依赖,缺乏对AI译文的批判性审校意识与能力。翻译教师应据此调整教学重点,聚焦高阶翻译能力,提升学生人文素养,最终实现人机协同翻译的最优效果。

关键词: AI翻译;翻译教学;质性分析;文本对比分析;MQM框架

Abstract

This study recruited 58 third-year translation majors and adopted a crossover experimental design. Using in-depth textual comparison based on the Multidimensional Quality Metrics (MQM) model and semi-structured interviews, it systematically explored students' competency gaps and AI usage issues in AI-assisted translation.
Results indicate that under both conditions, students exhibit obvious limitations in context recognition, syntactic adjustment, and pragmatic style handling. They also show varying degrees of over-reliance on AI, lacking the awareness and ability to critically review AI-generated translations. Translation teachers should thus adjust teaching priorities, focus on high-order translation competencies, and enhance students' humanistic literacy to achieve optimal human-AI collaborative translation.

Key words: AI translation; Translation teaching; Qualitative analysis; Textual comparative analysis; MQM framework

参考文献 References

[1] 覃军,马冬梅.GenAI时代翻译教学的创新:求变与应变[J].上海翻译,2025,(05):52-57+95.

[2] 王华树,刘世界.智慧翻译教育研究:理念、路径与趋势[J].上海翻译,2023,(03):47-51+95.

[3] 朱玉彬,汪蓝玉.生成式人工智能时代的翻译技术知识观:理论内涵与教学启示[J].中国翻译,2025,46(01):62-70.

[4] 江先发,赖文斌.数智时代翻译教学的“ABC”路径探索[J].上海翻译,2024,(01):63-67

[5] Konttinen K, Salmi L & Koponen M. Revision and Post-editing Competences in Translator Education [A] in Translation Revision and Post-editing Industry Practices and Cognitive Processes [C]. London: Routledge, 2021. 187-202.

[6] Guerberof Arenas A & Moorkens J. Machine translation and Post-editing Training as Part of a Master’s Programme [J]. The Journal of Specialised Translation, 2019, 31: 217-238.

[7] Massey G, Kiraly D & Ehrensberger-Dow M. Training Translator Trainers: An Introduction [J]. The Interpreter and Translator Trainer, 2019, 13(3): 211-215.

[8] 成爽,张玉双.翻译教学质量评估新视角:行业评估模型[J].当代外语研究,2024,(05):45-56+79.