Research on Information System Project Management
Research on Information System Project Management. 2025; 5: (2) ; 10.12208/j.ispm.20250015 .
总浏览量: 56
国华(沽源)风电有限公司 河北张家口
*通讯作者: 韩迎春,单位:国华(沽源)风电有限公司 河北张家口;
风力发电作为清洁能源的核心支柱,其安全稳定运行对电网可靠性和经济效益至关重要。变桨系统是风电机组的核心执行机构,负责精准调节叶片桨距角以捕获最佳风能并确保机组安全,其运行状态直接影响发电效率与设备寿命。变桨系统结构复杂,工作环境恶劣,故障率高,一旦失效可能导致发电量损失甚至灾难性事故。因此,开发高效、精准的故障预警与处理技术成为风电运维领域的迫切需求。本研究聚焦于变桨系统关键部件的故障机理与特征信号,深入探讨基于多源信息融合的状态监测方法,构建智能预警模型,并提出针对性的故障诊断与快速处理策略。研究旨在突破传统事后维修的局限,实现从被动响应向主动预防的转变,提升风电机组的可利用率和运行可靠性。
As a core pillar of clean energy, wind power generation plays a crucial role in ensuring the reliability and economic efficiency of the power grid. The pitch system, serving as a key executive mechanism of wind turbines, is responsible for precisely adjusting the blade pitch angle to capture optimal wind energy and ensure operational safety. Its performance directly affects power generation efficiency and equipment lifespan. However, due to its complex structure and harsh operating environment, the pitch system has a relatively high failure rate; once a malfunction occurs, it can lead to power losses or even catastrophic accidents. Therefore, developing efficient and accurate fault early warning and handling technologies has become an urgent demand in the field of wind power operation and maintenance. This study focuses on the fault mechanisms and characteristic signals of key components within the pitch system. It explores state monitoring methods based on multi-source information fusion, constructs intelligent early warning models, and proposes targeted fault diagnosis and rapid handling strategies. The research aims to overcome the limitations of traditional post-failure maintenance by enabling a shift from passive response to proactive prevention, thereby enhancing the availability and operational reliability of wind turbines.
[1] 张明红,张琛.结合专家知识与数据分析的风力发电机组参数异常检测方法研究[J].湖北电力, 2024, 48(5):51-58.
[2] 赵森,文登宇.变桨系统故障下风机极限载荷控制算法仿真设计与分析[J].机械设计与制造工程, 2024, 53(4):16-20.
[3] 何晓丽,刘立群.风电机组变桨系统状态监测方法研究[J].太原科技大学学报, 2024, 45(6):562-567.
[4] 杨家兴,齐春祥,王志勇.风力发电机组变桨滑环常见故障机理与研究[J].电力设备管理, 2023(1):262-264.
[5] 宋瑞鹤.风电机组变桨系统故障诊断方法研究[J].设备管理与维修, 2024(4):25-28.
[6] 吴松,贾帅,何晓峰,等.2.0MW机组变桨系统的技术改造方案分析[J].电子技术, 2023(4):139-141.
[7] 索新良,刘俊廷.变桨系统故障致风电机组倒塔事故分析[J].电力安全技术, 2024, 26(10):68-71.
[8] 井露茜,文传博指导.基于LMD-SECNN的风机变桨系统故障检测[J].上海电机学院学报, 2024, 27(1):13-19.
[9] 尹子康,林忠伟,吕广华,等.基于数据驱动的风电机组变桨系统故障诊断与健康状态预测研究[J].东北电力大学学报, 2023, 43(5):1-11.
[10] 侯泽营.华锐SL1500风电机组变桨系统故障分析与维修[J].黑龙江电力, 2024, 46(5):450-454.
[11] 冯猛,尹海天,黄燃.基于故障树的风电机组变桨系统故障诊断研究[J].数字化用户, 2023(4).