[email protected]

电气工程与自动化

Journal of Electrical Engineering and Automation

您当前位置:首页 > 精选文章

Journal of Electrical Engineering and Automation. 2025; 4: (7) ; 10.12208/j.jeea.20250223 .

Coordinated control strategy and economic analysis of wind power generation and energy storage system
风力发电与储能系统协同控制策略及经济性分析

作者: 王新元 *

沙电投资(上海)有限公司 上海

*通讯作者: 王新元,单位:沙电投资(上海)有限公司 上海;

引用本文: 王新元 风力发电与储能系统协同控制策略及经济性分析[J]. 电气工程与自动化, 2025; 4: (7) : 17-19.
Published: 2025/12/7 9:40:29

摘要

本文围绕风力发电与储能系统的协同控制策略及其经济性展开研究。针对风电出力波动大、并网稳定性差等问题,建立了包含风力发电、储能设备及电网的综合模型,提出基于预测控制与能量优化分配的协同控制方法。通过对风电功率预测、储能调度及实时负荷平衡的多目标优化,提升系统运行的稳定性和能效。在此基础上,引入全寿命周期成本分析方法,评估储能配置方案对整体经济性的影响。仿真结果表明,所提策略能够有效降低弃风率、改善并网质量,并在投资成本与运行收益之间实现最佳平衡,为风电大规模并网及清洁能源消纳提供参考。

关键词: 风力发电;储能系统;协同控制;经济性分析;能量优化

Abstract

This study investigates coordinated control strategies and economic efficiency in wind power generation with energy storage systems. To address challenges such as significant output fluctuations and poor grid stability, we developed an integrated model encompassing wind turbines, energy storage devices, and the power grid. The proposed method combines predictive control with energy optimization allocation to enhance system stability and energy efficiency through multi-objective optimization of wind power forecasting, energy storage scheduling, and real-time load balancing. Furthermore, a full life cycle cost analysis is introduced to evaluate the economic impact of energy storage configurations. Simulation results demonstrate that the proposed strategy effectively reduces wind curtailment rates, improves grid-connected performance, and achieves optimal balance between investment costs and operational returns. These findings provide valuable insights for large-scale wind power integration and clean energy utilization.

Key words: Wind power generation; Energy storage systems; Coordinated control; Economic analysis; Energy optimization

参考文献 References

[1] 牟志国,吕游,梁庚,等. 燃煤发电机组灵活性改造中熔盐储能系统的建模与性能分析[J/OL].动力工程学报,1-8[2025-08-30].

[2] 李煜鑫,何志琴,范强,等. 风光微电网中混合储能系统功率配置及预测控制改进策略[J/OL].南方电网技术,1-13[2025-08-30].

[3] 贾腾飞,王昆,周道亮,等. 新型储能系统在高速铁路中的供能研究[J/OL].铁道车辆,1-8[2025-08-30].

[4] 覃仲文. 基于光纤通信的智能照明系统储能协同优化[J].灯与照明,2025,49(04):94-96.

[5] 李佳敏,刘宇会. 基于因子分析法的风力发电行业财务绩效评价[J].中国农业会计,2025,35(16):33-35.

[6] 郑衍森,苏黄盛,梁业盈,等. 风力发电用储能电池技术的发展现状及展望[J].电力电容器与无功补偿,2025,46(04): 1-12.

[7] 郑先锐. 新能源光伏发电与风力发电技术分析[J].低碳世界,2025,15(08):70-72.

[8] 张帆,欧阳章智,牟征辉,等. 基于模糊层次分析法的斜坡式重力储能系统选址策略[J/OL].南方能源建设,1-10[2025-08-30].