Advances in Constructional Engineering
Advances in Constructional Engineering. 2025; 5: (5) ; 10.12208/j.ace.2025000174 .
总浏览量: 59
上海华东铁路建设监理有限公司 上海
*通讯作者: 谭明松,单位:上海华东铁路建设监理有限公司 上海;
铁路隧道衬砌裂缝的智能识别技术对于提高隧道建设与运营的安全性具有重要意义。传统的裂缝检测方法依赖人工检查或基础的自动化设备,存在检测效率低、误差大等问题。随着人工智能、计算机视觉及深度学习技术的快速发展,基于图像处理和机器学习的智能识别技术逐渐成为解决这一难题的有效手段。本文探讨了铁路隧道衬砌裂缝的智能识别技术的应用,重点分析了现有技术的优势与局限,并提出了适用于隧道衬砌裂缝识别的优化方案。通过数据集的构建和模型训练,提升裂缝检测的准确性和效率,为隧道衬砌的维护和管理提供有效的技术支持。
The intelligent identification technology for cracks in railway tunnel linings is of great significance for enhancing the safety of tunnel construction and operation. Traditional crack detection methods rely on manual inspection or basic automated equipment, which have problems such as low detection efficiency and large errors. With the rapid development of artificial intelligence, computer vision, and deep learning technologies, intelligent identification technology based on image processing and machine learning has gradually become an effective means to solve this problem. This paper discusses the application of intelligent identification technology for cracks in railway tunnel linings, focuses on analyzing the advantages and limitations of existing technologies, and proposes an optimization scheme suitable for crack identification in tunnel linings. Through the construction of datasets and model training, the accuracy and efficiency of crack detection are improved, providing effective technical support for the maintenance and management of tunnel linings.
[1] 张国军. 单线铁路隧道衬砌智能蒸汽及跟模养生台车设计及应用[J].凿岩机械气动工具,2025,51(06):16-18.
[2] 郭世杰. 高速铁路隧道全工序智能装备机械化配套施工方法研究[J].自动化应用,2025,66(09):147-149.
[3] 程朝,李树茂,蔺诗瑶,等. 基于智能化识别的铁路隧道多连通域映射函数求解[J].四川建筑,2025,45(01):137-139+142.
[4] 田阳,刘桂卫,崔庆国,等. 铁路隧道衬砌病害轻量化智能检测技术研究[J].铁道工程学报,2025,42(02):85-90.
[5] 吴克烽,许贵阳,白堂博. 基于无人机巡检的铁路隧道口墙体裂缝智能检测技术[J].北京交通大学学报,2025, 49(02): 115-122+134.
[6] 姬彬波,谭成伟,刘恒,等. 铁路隧道工程建设施工安全现状及应对策略[J].交通节能与环保,2024,20(S2):215-220.
[7] 陈立杨,刘洋. 一种基于智能识别算法的铁路隧道表面缺陷综合检测技术[J].中国科技信息,2024,(12):123-125.
[8] 唐清婧怡.基于深度学习的隧道衬砌脱空病害雷达图像智能识别与病害等级评定[D].石家庄铁道大学,2024.