Journal of Electrical Engineering and Automation
Journal of Electrical Engineering and Automation. 2025; 4: (6) ; 10.12208/j.jeea.20250199 .
总浏览量: 40
沙能(上海)技术服务有限公司 上海
*通讯作者: 杨彩杰,单位:沙能(上海)技术服务有限公司 上海;
大型风电场集群在并网运行过程中面临功率预测不确定性和调度优化的双重挑战。针对这一问题,提出一种融合高精度功率预测与自适应调度优化的综合方法。基于多源气象数据与风机运行特性,构建深度学习预测模型,实现对风电功率的高精度短期预测。结合预测结果与电网运行约束,采用多目标优化算法对风电场群的发电计划进行动态调整,以兼顾出力平稳性与经济性。仿真结果表明,该方法显著降低预测误差,提高风电场群整体调度效率,为大规模风电并网运行提供了有效技术支持。
Large-scale wind farm clusters face dual challenges of power prediction uncertainty and dispatch optimization during grid-connected operation. To address this issue, a comprehensive method integrating high-precision power prediction with adaptive dispatch optimization is proposed. By leveraging multi-source meteorological data and wind turbine operational characteristics, a deep learning prediction model is constructed to achieve high-precision short-term wind power forecasting. Combining the predicted results with grid operation constraints, a multi-objective optimization algorithm is employed to dynamically adjust the generation plans of wind farm clusters, balancing output stability and economic efficiency. Simulation results demonstrate that this approach significantly reduces prediction errors and enhances overall dispatch efficiency of wind farm clusters, providing effective technical support for large-scale wind power grid integration.
[1] 李卓,蒋琳,席尚华,等. 融合气象数据的太阳能光伏发电短期功率预测方法研究[J].信息化研究,2025,51(04): 166-171.
[2] 刘燕,贺吉飞. 大数据驱动下的新能源发电功率预测及数据挖掘应用[J].科技与创新,2025,(15):222-225.
[3] 王明俊,贾建华,董小录,等. 新能源功率预测分析与算法研究[J].电工技术,2025,(14):91-94.
[4] 王磊,滕伟,武鑫,等. 风功率预测关键技术及其研究应用综述[J/OL].动力工程学报,1-15[2025-08-30].
[5] 何飞跃,罗钰昕. 大型风电场自动电压控制系统设计与实现[J].水电站机电技术,2024,47(12):168-170.
[6] 张剑锋. 大型风电场集电线路隐患预警与故障定位技术应用分析[J].电气技术与经济,2024,(11):147-150.
[7] 韩毅,刘玮,张丽辉,等. 大型风电场实地测风数据精细化分析方法[J].科学技术与工程,2024,24(26):11271-11282.
[8] 张雄. 大型风电场基础工程设计与施工中的关键技术问题[J].城市建设理论研究(电子版),2024,(23):119-121.