Journal of Engineering Research
Journal of Engineering Research. 2025; 4: (8) ; 10.12208/j.jer.20250373 .
总浏览量: 141
山西安昆新能源有限公司 山西河津
*通讯作者: 贾凯强,单位:山西安昆新能源有限公司 山西河津;
化工过程中的风险预警一直是工业安全管理的重要课题。随着人工智能技术的快速发展,传统的风险评估方法逐渐暴露出效率低、准确性差的问题。本研究提出了一种基于人工智能的化工过程动态风险预警模型,通过结合机器学习和数据挖掘技术,实时监控化工过程中的异常行为,提前预测潜在风险。该模型能够有效提高风险预警的准确性和响应速度,减少人为因素干扰,提升安全管理水平。实验结果表明,人工智能模型在多个化工场景中具有较高的预测精度,能够为安全决策提供有效支持。
Risk early warning in chemical processes has always been an important topic in industrial safety management. With the rapid development of artificial intelligence technology, traditional risk assessment methods have gradually exposed problems such as low efficiency and poor accuracy. This study proposes a dynamic risk early warning model for chemical processes based on artificial intelligence. By integrating machine learning and data mining technologies, the model monitors abnormal behaviors in chemical processes in real time and predicts potential risks in advance. It can effectively improve the accuracy and response speed of risk early warning, reduce the interference of human factors, and enhance the level of safety management. Experimental results show that the artificial intelligence model has high prediction accuracy in multiple chemical scenarios and can provide effective support for safety decision-making.
[1] 杨成玮,陆新建,徐滨阳,等.基于大模型的化工安全风险智能识别研究[J].邮电设计技术,2025,(06):18-22.
[2] 胡云洋.人工智能在化工生产过程自动化中的应用[J].塑料工业,2025,53(03):192.
[3] 靳满满,吕志果,牛庆涛. 基于“Just-in-Time”动态精准对接产业需求的化工过程开发与设计课程改革与实例[J].大学化学,2024,39(11):108-116.
[4] 曹寒齐,苏鹏,刘飞.一种线性逼近的化工过程迭代动态规划算法[C]//中国自动化学会过程控制专业委员会,中国自动化学会.第35届中国过程控制会议论文集.江南大学轻工过程先进控制教育部重点实验室;,2024:617.
[5] 赵鹏,洪悦. 基于改进动态核主元分析算法的化工过程故障检测[J].化工自动化及仪表,2024,51(03):403-409.
[6] 李松明.基于大数据驱动的化工园区企业动态风险分级管控系统的研究与实现[D].华南理工大学,2024.
[7] 许锋,韩璐,罗雄麟. 化工过程裕量设计与裕量评价[J].化工自动化及仪表,2023,50(05):611-621.
[8] 刘鹏,张成,邓成龙. 基于改进KSFA的非线性动态化工过程安全性研究[J].化工设计通讯,2023,49(06):80-82.