[email protected]

工程学研究

Journal of Engineering Research

您当前位置:首页 > 精选文章

Journal of Engineering Research. 2025; 4: (8) ; 10.12208/j.jer.20250365 .

Industrial equipment fault diagnosis platform with multimodal sensor fusion
多模态传感器融合的工业设备故障诊断平台

作者: 李军 *

深圳永恒光智慧科技集团有限公司 广东深圳

*通讯作者: 李军,单位:深圳永恒光智慧科技集团有限公司 广东深圳;

引用本文: 李军 多模态传感器融合的工业设备故障诊断平台[J]. 工程学研究, 2025; 4: (8) : 52-54.
Published: 2025/8/15 11:40:25

摘要

工业设备在复杂工况下运行时容易产生多源、多尺度的异常信号,单一传感器难以全面反映设备状态,导致故障诊断精度和实时性受限。本文提出基于多模态传感器融合的故障诊断平台,通过整合振动、声学、温度、电流等多类信号,实现跨模态特征提取与信息协同分析。结合深度学习和机器学习算法,平台能够从高维数据中提取关键特征并进行智能分类与预测。实验验证表明,该平台在复杂工况下提高了故障识别准确率和鲁棒性,同时保持较低延迟,实现了工业设备健康状态的高效监测与智能化管理。

关键词: 多模态传感器;故障诊断;数据融合;工业设备

Abstract

Industrial equipment operating under complex conditions often generates multi-source and multi-scale abnormal signals. A single sensor cannot comprehensively reflect the equipment's status, resulting in limitations in fault diagnosis accuracy and real-time performance. This paper proposes a fault diagnosis platform based on multimodal sensor fusion, which integrates vibration, acoustic, temperature, and current signals to achieve cross-modal feature extraction and collaborative analysis. By combining deep learning and machine learning algorithms, the platform extracts key features from high-dimensional data for intelligent classification and prediction. Experimental verification demonstrates that this platform enhances fault recognition accuracy and robustness under complex operating conditions while maintaining low latency, enabling efficient monitoring and intelligent management of industrial equipment health status.

Key words: Multimodal sensor; Fault diagnosis; Data fusion; Industrial equipment

参考文献 References

[1] 伍章俊,许仁礼,方刚,等.一种面向旋转机械多传感器故障诊断的模态融合深度聚类方法[J].电子与信息学报,2025,47(01):244-259.

[2] 莫炯豪,张伯虎.基于多源信号融合的滚动轴承故障诊断方法[J].南方农机,2024,55(17):150-152.

[3] 孙旭,高君宇,袁媛.多模态航空传感器故障分析[C]//中国航空学会.第六届中国航空科学技术大会论文集。西北工业大学光电与智能研究院;2023:669-676.

[4] 王渊德,毛崎波,黄仕卓,等.直升机桨叶阵列式压电模态传感器的故障诊断[J].传感技术学报,2023,36(05):686-691.

[5] 朱峤.阵列式压电模态传感器的设计及其故障诊断研究[D].南昌航空大学,2015.

[6] 谭平.智能车辆的惯性传感器故障诊断研究[D].中南大学,2012.

[7] 王举重,李慧洋,白海东.基于多物理信息的煤岩界面识别方法研究[J].能源与环保,2025,47(07):281-286.

[8] 刘德儿,程健康,刘峻廷.改进容积卡尔曼滤波的多目标多模态跟踪算法[J].传感技术学报,2025,38(07):1253-1261.