Scientific Development Research
Scientific Development Research . 2025; 5: (7) ; 10.12208/j.sdr.20250267 .
总浏览量: 73
新疆大学地质与矿业工程学院 新疆乌鲁木齐
*通讯作者: 程刚,单位:新疆大学地质与矿业工程学院 新疆乌鲁木齐;
为研究不同氧浓度环境对煤自燃特性的影响规律,采用程序升温实验方法,升温速率为5K/min、升温范围30~400℃,气体流速为50ml/min,改变N₂和O₂的气体流速达到0%、3%、5%、7%、10%、12%、15%、18%、21%九种氧浓度条件,然后对新疆准东地区易自燃煤样进行了系统实验研究。通过监测升温过程中CO、CO₂等特征气体产物浓度变化,分析不同氧浓度对煤氧化自燃过程的影响机理。根据实验结果表明,当温度达到100℃,煤样产生的CO₂浓度随着氧浓度升高而显著升高,与此同时CO浓度开始也呈指数型快速增长,且在12%和15%氧浓度的条件下时达到峰值分别为31590ppm、31570ppm。研究结果为矿井防灭火技术的制定和惰化防火措施的优化提供了理论依据。
To investigate the influence of different oxygen concentrations on the spontaneous combustion characteristics of coal, a programmed temperature experiment was conducted with a heating rate of 5 K/min, a temperature range of 30~400℃ and a gas flow rate of 50 ml/min. By adjusting the flow rates of N₂ and O₂, nine oxygen concentration conditions were achieved: 0%, 3%, 5%, 7%, 10%, 12%, 15%, 18%, and 21%. A systematic experimental study was carried out using a coal sample prone to spontaneous combustion from the Zhundong region of Xinjiang. By monitoring the changes in the concentrations of characteristic gaseous products such as CO and CO₂ during the heating process, the influence mechanism of different oxygen concentrations on the coal oxidation and spontaneous combustion process was analyzed. The experimental results indicate that when the temperature reached 100°C, the CO₂ concentration generated by the coal sample increased significantly with rising oxygen concentration. Meanwhile, the CO concentration initially exhibited exponential growth, peaking at 31,590 ppm and 31,570 ppm under oxygen concentrations of 12% and 15%, respectively. The research results provide a theoretical basis for the formulation of mine fire prevention and extinguishing technologies and the optimization of inert gas fire prevention measures.
[1] 刘艳亮. 2002~2016年我国煤矿事故统计分析及预防措施[J]. 陕西煤炭, 2018, 37(3): 64-67, 40.
[2] 邓军, 白祖锦, 肖旸, 等. 煤自燃灾害防治技术现状与挑战[J/OL]. 煤矿安全, 2020, 51(10): 118-125.
[3] 邓军, 徐精彩, 陈晓坤. 煤自燃机理及预测理论研究进展[J]. 辽宁工程技术大学学报, 2003(4): 455-459.
[4] 邓军, 李贝, 王凯, 等. 我国煤火灾害防治技术研究现状及展望[J/OL]. 煤炭科学技术, 2016, 44(10): 1-7, 101.
[5] 戚颖敏. 我国煤矿火灾防治技术的现代发展与应用[J/OL]. 煤, 1999(2)[2025-11-17].
https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD9899&filename=MEIA902.000.
[6] 秦波涛, 仲晓星, 王德明, 等. 煤自燃过程特性及防治技术研究进展[J/OL]. 煤炭科学技术, 2021, 49(1): 66-99.
[7] 陈锐, 秦汝祥. 不同氧浓度与粒径对煤自燃特性的影响研究[J/OL]. 内蒙古煤炭经济, 2025(7): 10-12.
[8] WANG H, DLUGOGORSKI B Z, KENNEDY E M. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling[J/OL]. Progress in Energy and Combustion Science, 2003, 29(6): 487-513.
[9] 张辛亥, 张天赐, 王玥, 等. 不同氧浓度和温度下侏罗纪煤氧化动力学参数规律[J/OL]. 西安科技大学学报, 2019, 39(4): 564-570.
[10] 杨博, 王昊宇, 司俊鸿, 等. 基于程序升温的沙曲一矿煤自燃特性实验研究[J/OL]. 华北科技学院学报, 2024, 21(4): 49-55.