[email protected]

电气工程与自动化

Journal of Electrical Engineering and Automation

您当前位置:首页 > 精选文章

Journal of Electrical Engineering and Automation. 2025; 4: (5) ; 10.12208/j.jeea.20250190 .

Adaptive transformation and capacity configuration of hydrogen energy storage system in emergency power supply for plateau mining areas
氢储能系统在高原矿区应急供电中的适应性改造与容量配置

作者: 郑军胜 *

天兴矿业 河北秦皇岛

*通讯作者: 郑军胜,单位:天兴矿业 河北秦皇岛;

引用本文: 郑军胜 氢储能系统在高原矿区应急供电中的适应性改造与容量配置[J]. 电气工程与自动化, 2025; 4: (5) : 120-122.
Published: 2025/5/21 12:50:18

摘要

氢储能系统在高原矿区应急供电中具有清洁、高效和可持续的优势,但受低气压、大温差及恶劣环境影响,其运行效率与安全性面临挑战。结合高原地理与气候特点开展适应性改造,可提升电解制氢效率、储氢密封性能及燃料电池低氧下的输出稳定性。科学的容量配置不仅影响应急供电的持续性与可靠性,也关系到系统经济性与运维成本。通过分析不同工况能量需求,并优化氢气制取、储存与转化效率,可实现供电能力与实际负荷精准匹配,为高原矿区能源保障与绿色矿山建设提供支撑。

关键词: 氢储能系统;高原矿区;应急供电;适应性改造;容量配置

Abstract

The hydrogen energy storage system has the advantages of cleanliness, high efficiency and sustainability in emergency power supply for plateau mining areas. However, its operational efficiency and safety are challenged by low air pressure, large temperature differences and harsh environments. Carrying out adaptive transformation in combination with the geographical and climatic characteristics of the plateau can improve the efficiency of electrolytic hydrogen production, the sealing performance of hydrogen storage, and the output stability of fuel cells under low oxygen conditions. Scientific capacity configuration not only affects the continuity and reliability of emergency power supply, but also relates to system economy and operation and maintenance costs. By analyzing energy demands under different working conditions and optimizing the efficiency of hydrogen production, storage and conversion, the precise matching between power supply capacity and actual load can be achieved, providing support for energy security in plateau mining areas and the construction of green mines.

Key words: Hydrogen energy storage system; Plateau mining area; Emergency power supply; Adaptive transformation; Capacity configuration

参考文献 References

[1] 潘梦钊. 高原宾馆建筑电-热-氧联供系统多能协同机制及优化设计研究[D]. 陕西:西安建筑科技大学,2024.

[2] 蒋志军,吴保华,朱晓梅,等. 基于镍氢电池的192V/ 200Ah储能系统[J]. 电池,2022,52(4):437-440. 

[3] 范文轩,袁至,王维庆,等. 绿氢储能系统综合评价体系和双层优化方法[J]. 电力自动化设备,2025,45(4):19-27. 

[4] 刘明波,曾贵华,董萍,等. 氢储能系统容量双层鲁棒随机优化配置方法[J]. 华南理工大学学报(自然科学版), 2024, 52(9):12-23.

[5] 崔杨,管彦琦,李佳宇,等. 考虑碳捕集机组与氢储能系统协调运行的源荷储低碳经济调度[J]. 电网技术,2024, 48(6):2307-2316,中插17-中插20.

[6] 王运,蒙飞,张超,等. 氨分解制氢储能系统容量对电力系统性能的影响[J]. 储能科学与技术,2024,13(2):589-597. 

[7] 樊宇航,曾琴,袁满. 氢储能系统关键技术及应用分析[J]. 电气技术与经济,2023(1):66-68.

[8] 冯秋硕. 含氢储能系统的远海岸风电振荡抑制研究[D]. 华北电力大学,华北电力大学(北京),2023.