Journal of Electrical Engineering and Automation
Journal of Electrical Engineering and Automation. 2025; 4: (5) ; 10.12208/j.jeea.20250165 .
总浏览量: 25
宁波高正工程管理有限公司 浙江宁波
*通讯作者: 周欣驰,单位:宁波高正工程管理有限公司 浙江宁波;
微电网黑启动恢复是电力系统恢复中的关键问题,尤其是在遭遇大规模停电或自然灾害时。为了解决这一问题,基于深度强化学习的策略被提出用于优化微电网黑启动的恢复过程。通过利用深度强化学习模型的自学习能力,系统能够从大量的历史数据和当前环境中获取有效的恢复策略,显著提高恢复速度与精确度。本研究利用深度强化学习的优势,结合微电网特点,提出了一种适应性强、效率高的黑启动恢复策略,为微电网的智能恢复和能源管理提供了新思路。实验结果表明,该方法在不同的运行环境下均表现出良好的恢复效果。
Microgrid black start recovery is a key issue in power system restoration, especially in the event of large-scale power outages or natural disasters. To address this problem, a strategy based on deep reinforcement learning is proposed to optimize the microgrid black start recovery process. By leveraging the self-learning capability of deep reinforcement learning models, the system can obtain effective recovery strategies from a large amount of historical data and the current environment, significantly improving recovery speed and accuracy. This study takes advantage of deep reinforcement learning and combines the characteristics of microgrids to propose a highly adaptive and efficient black start recovery strategy, providing new ideas for intelligent recovery and energy management of microgrids. Experimental results show that this method achieves good recovery performance in different operating environments.
[1] 赵后起,邓卫,崔承刚,等.孤岛微电网环境下基于物理模型引导的深度强化学习VSG频率控制方法[J/OL].中国电机工程学报,1-13[2025-07-11].
[2] 曾磊,丁泉,陈孝煜,等.基于深度强化学习的微电网运行优化方法[J].浙江电力,2025,44(06):31-40.
[3] 郭鑫溢,姜凯,杨朋威,等.基于深度强化学习的居民微电网调度算法[J].计算机与现代化,2025,(06):106-113.
[4] 林文硕,李欣,周荣生,等.基于深度强化学习的微电网低碳优化运行方法[J/OL].现代电力,1-13[2025-07-11].
[5] 王力,蒋宇翔,曾祥君,等.基于深度强化学习的孤岛微电网二次频率控制[J].中国电力,2025,58(05):176-188.
[6] 柳伟,胡添欢,汤程烨.基于深度强化学习的孤立微电网分布式牵制协同控制[J/OL].控制理论与应用,1-9[2025-07-11].
[7] 周剑,聂孝婷,庞可欣,等.基于深度强化学习算法的跨区域多微电网系统扩展规划研究[J/OL].中国管理科学,1-12[2025-07-11].
[8] 刘蕴娴.基于深度强化学习算法的微电网能量优化管理研究[D].西华大学,2024.