[email protected]

化学与化工研究

Journal of Chemistry and Chemical Research

您当前位置:首页 > 精选文章

Journal of Chemistry and Chemical Research. 2025; 5: (2) ; 10.12208/j.jccr.20250063 .

Intelligent identification of abnormal operating conditions and safety control strategies in chemical processes
化工过程非正常工况智能识别与安全控制策略

作者: 贾凯强 *

山西安昆新能源有限公司 山西河津

*通讯作者: 贾凯强,单位:山西安昆新能源有限公司 山西河津;

引用本文: 贾凯强 化工过程非正常工况智能识别与安全控制策略[J]. 化学与化工研究, 2025; 5: (2) : 71-73.
Published: 2025/9/24 14:55:03

摘要

化工过程中的非正常工况会严重影响生产安全和产品质量,及时识别并有效控制这些工况对保障生产系统的安全运行至关重要。本研究探讨了化工过程非正常工况的智能识别方法及其安全控制策略,提出了一种基于多源数据融合和机器学习算法的识别系统,并设计了智能控制策略以降低非正常工况发生的风险。通过案例研究,验证了该方法在实际生产环境中的有效性,显著提高了反应系统的安全性和稳定性。研究结果为提升化工过程自动化和安全性提供了理论支持与实践指导。

关键词: 化工过程;非正常工况;智能识别;安全控制;机器学习

Abstract

Abnormal operating conditions in chemical processes can severely affect production safety and product quality. Timely identification and effective control of these conditions are crucial for ensuring the safe operation of production systems. This study explores intelligent identification methods for abnormal operating conditions in chemical processes and their corresponding safety control strategies. It proposes an identification system based on multi-source data fusion and machine learning algorithms, and designs intelligent control strategies to reduce the risk of abnormal operating conditions. Through case studies, the effectiveness of this method in actual production environments is verified, which significantly improves the safety and stability of the reaction system. The research results provide theoretical support and practical guidance for enhancing the automation and safety of chemical processes.

Key words: Chemical processes; Abnormal operating conditions; Intelligent identification; Safety control; Machine learning

参考文献 References

[1] 赵辉.基于因果双向推理的石化生产复杂过程非正常工况监测预警方法[D].北京化工大学,2025.

[2] 陈文涛,杨茗铠,王文和,等. 基于SDG和CBR的化工过程风险评价[J].中国安全科学学报,2025,35(03):77-84.

[3] 唐浩. 化工过程中反应釜故障研究[J].山西化工,2024,44(12):126-128.

[4] 彭湘涛,李红雁,兰劭晖,等. 化工过程故障检测中机器学习算法应用研究[J].塑料工业,2024,52(12):205-206.

[5] 常海霞,于晓珊. 化工过程工艺变更的安全风险评估与管理研究[J].中国石油和化工,2024,(11):49-51.

[6] 江奕苇.非正常工况下感应滤波变压器应用研究[D].中国矿业大学,2024.

[7] 阎智峰. 精细化工过程控制技术的发展方向[J].化工设计通讯,2023,49(12):177-179.

[8] 陈荣,冯俊琨,谢时勇. 应用于非正常工况下的高功率ANPC逆变器研究[J].电子器件,2023,46(01):138-142.