International Journal of Materials Science
International Journal of Materials Science. 2024; 6: (1) ; 10.12208/j.ijms.20240010 .
总浏览量: 219
1 石家庄学院,石家庄市绿色装饰板材技术创新中心 河北石家庄
2 广骏新材料科技股份有限公司,河北省节能住宅保温材料技术创新中心 河北石家庄
*通讯作者: 周健,单位: 石家庄学院,石家庄市绿色装饰板材技术创新中心 河北石家庄;
为了解决传统膨胀珍珠岩板抗压强度低、导热系数高的问题,本文采用空心玻璃微珠(HGM)对其进行改性。将HGM、水泥、膨胀珍珠岩粉、胶粉、纤维及水按比例混合制备成砂浆,再将其灌入特定尺寸的模具中,经过养护、干燥,制得测试样块。通过激光粒度、红外、扫描电镜表征了HGM的形貌与官能团,系统测试了样块的容重、抗压强度、导热系数,并与未改性板材进行对比。实验表明:5%HGM掺量为综合最优配比,其容重408.7 kg/m3、抗压强度1134.3 kPa、导热系数0.085193 W/(m·K),均优于未掺HGM的珍珠岩板。其核心机理为:5%掺量时完整HGM占主体,破碎少,形成“点-壳”骨架,既切断了热桥又分担了载荷;当空心玻璃微珠掺量≥10%后,微珠破碎率提高,容重和导热系数反弹,强度虽有提升,却是以牺牲轻质为代价。本研究为外墙保温轻质高强板材提供了5%空心玻璃微珠均衡配比及其机理依据,为后续改善工艺以减少破损打下基础。
To address the limitations of traditional perlite boards—namely, low compressive strength and inadequate thermal insulation—this study introduced hollow glass microspheres (HGM) into the formulation. A mortar was prepared by combining HGM, cement, perlite powder, adhesive powder, fibers, and water in specific ratios. This mixture was poured into molds of defined dimensions. After curing and drying, test specimens of suitable sizes were obtained. The morphology and functional groups of HGM were characterized by laser particle size, infrared and scanning electron microscopy. Their bulk density, compressive strength, and thermal conductivity were then measured and compared with those of control specimens without HGM. The results showed that the modified perlite board containing 5% HGM demonstrated the most balanced overall performance, with a bulk density of 408.7 kg/m³, compressive strength of 1134.3 kPa, and thermal conductivity of 0.085193 W/(m·K)—all representing improvements over the unmodified specimens. The core mechanism is as follows: at 5% dosage, intact HGM predominate with minimal fragmentation, forming a "point-shell" framework that effectively cuts thermal bridges while distributing loads. However, when the microbead content increases to ≥10%, the fragmentation rate rises, causing a rebound in bulk density and thermal conductivity. Although strength improves, this enhancement comes at the expense of reduced lightweight performance. This study provides a balanced 5% hollow glass microbead ratio and its mechanistic basis for lightweight high-strength exterior wall insulation boards, laying the foundation for subsequent process optimization to reduce breakage.
[1] 陈兵, 胡华洁, 刘宁. 生土泡沫混凝土试验研究[J]. 建筑材料学报, 2015, 18(1): 1-6.
[2] Kwok K Y G, Jonghoon K, Wai K, et al. Structuring a comprehensive carbon-emission framework for the whole life-cycle of building, operation, and construction[J]. Journal of Architectural Engineering, 2016, 22(3): 04016006.
[3] 中国建筑能耗与碳排放研究报告(2023年)[R]. 建筑, 2024, (2): 46-59.
[4] 王飞. 框架结构外围护墙膨胀珍珠岩板保温饰面层抗震性能试验研究[D]. 济南: 山东建筑大学, 2020.
[5] 邢军, 赵英良, 孙晓刚, 等. 外墙泡沫保温材料的技术现状及用铁尾矿试制[J]. 有色金属: 矿山部分. 2016, 68(4): 45-49.
[6] 王颖佳.新型轻质高强材料在装配式建筑中的应用[J]. 建材与装饰. 2016, 24(20): 138-139.
[7] 高锦秀. 新型建筑墙体无机保温隔热板材的研究与开发[D]. 杭州: 浙江大学, 2013.
[8] 李占兵. 膨胀珍珠岩保温板的制备及性能研究[D]. 北京: 中国地质大学, 2013.
[9] 王文娟. 膨胀珍珠岩保温板在建筑节能中的应用[J]. 江苏建材. 2024, 1: 26-27.
[10] 魏莹莹, 胡文, 聂成才. 绿色环保建筑材料及其应用[J]. 江西建材. 2016, (1): 29.
[11] 王岩, 王祎玮, 白锡庆, 等. 墙体保温材料的现状及其发展趋势[J]. 天津建设科技, 2017, 27(1): 1-3+11.
[12] 马玉民, 蔡耀武, 张勇, 等. 空心玻璃微珠的研究进展和应用现状[J]. 有机硅材料. 2023, 37(4): 75-80.
[13] 申娜娜. 空心玻璃微珠轻质高强材料的制备与性能研究[D]. 天津: 天津大学, 2013.
[14] 桂术鹏. 空心玻璃微珠的制备及性能研究[D]. 邯郸: 河北工程大学, 2020.
[15] 韩复兴. 我国空心玻璃微珠制备技术进展与发展方向[J]. 佛山陶瓷. 2022, 32(3): 6-11.
[16] 张勇, 马玉民, 陆瑜翀, 等. 空心玻璃微珠在高性能保温涂料中的应用[J]. 山东化工, 2024, 53(2): 157-160.
[17] 彭寿, 王芸, 彭程, 等. 空心玻璃微珠制备方法及应用研究进展[J]. 硅酸盐通报, 2012, 31(6): 1508-1513.
[18] 刘亚辉, 冯建林, 许传华. 高性能空心玻璃微珠的应用研究[J]. 化学工程与装备, 2011, 5: 33-35.
[19] 赵体鹏, 莫荣强, 万虎. 空心玻璃微珠改性低密度PA6材料研究[J]. 广东化工, 2021, 48(20): 91-93+90.
[20] 王晴, 吴陶俊, 邱琳格, 等. 空心玻璃微珠对泡沫混凝土性能的影响[J]. 混凝土, 2014(2): 71-74.
[21] Qi X, Gao C, Zhang Z. Production and characterization of hollow glass microspheres with high diffusivity for hydrogen storage[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1518-1530.
[22] 李雨霏. 节能减排下绿色建筑设计的原则[J]. 低碳世界. 2018, (4): 175-176.