International Journal of Materials Science
International Journal of Materials Science. 2024; 6: (1) ; 10.12208/j.ijms.20240004 .
总浏览量: 228
1 石家庄学院化工学院,石家庄市绿色装饰板材技术创新中心,环境催化及清洁技术研究创新中心 河北
2 河北姝龙科技有限公司 河北沧州
*通讯作者: 林双龙,单位: 石家庄学院化工学院,石家庄市绿色装饰板材技术创新中心,环境催化及清洁技术研究创新中心 河北;
氯氧化铋(BiOCl)作为光催化材料备受关注。但单一单体难以满足实际光催化降解需求,因此将其作为修饰量,修饰镁铝类水滑石并复合,可显著提升光催化性能。本文通过水热法制备出BiOCl和镁铝类水滑石(MgAl-LDH),把MgAl-LDH作为载体,负载BiOCl单体,制得BiOCl/MgAl-LDH复合光催化材料。通过改变BiOCl负载量,得到不同负载率的复合光催化剂,以探究其光催化活性与性能。利用扫描电镜、X射线衍射和紫外-可见漫反射光谱进行表征分析,确定BiOCl成功负载到MgAl-LDH上。以有机染料亚甲基蓝(MB)为降解目标,用氙灯照射180分钟,结果显示负载率25%的BiOCl/MgAl-LDH复合光催化材料光催化效果最佳,降解率达99.1%。对该材料进行可重复性实验,探究其稳定性,发现它具有优异的稳定性。最后通过淬灭实验证明,h+是参与反应的主要活性物种。
Bismuth Chloride (BiOCl) has attracted much attention as a photocatalytic material. However, it is difficult for a single monomer to meet the actual needs of photocatalytic degradation, so it can be used as a modified quantity to modify MgAl-layered double hydroxide (MgAl-LDH) and composite it, which can significantly improve the photocatalytic performance.This paper prepares BiOCl and MgAl-layered double hydroxide (MgAl-LDH) by hydrothermal method, and uses MgAl-LDH as a carrier to load BiOCl monomer to prepare BiOCl/MgAl-LDH composite photocatalytic materials. By changing the BiOCl load, a composite photocatalyst with different load rates is obtained to explore its photocatalytic activity and performance. Using scanning electron microscopy, X-ray diffraction and ultraviolet-visible diffuse reflection spectrum for characterisation analysis, it was determined that BiOCl was successfully loaded on MgAl-LDH.Taking the organic dye methylene blue (MB) as the degradation target, it was irradiated with a xenon lamp for 180 minutes. The results showed that the photocatalytic effect of BiOCl/MgAl-LDH composite photocatalytic material with a load rate of 25% was the best, with a degradation rate of 99.1%. Conduct repeatability experiments on the material, explore its stability, and find that it has excellent stability. Finally, the quenching experiment proved that h + is the main active species involved in the reaction.
[1] Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results[J]. Chemical Reviews, 1995, 95(3):735-758.
[2] 贾永军. Cu-Mg-Al复合金属氧化物对Cr(Ⅵ)的吸附性能[J]. 电镀与环保, 2018, 38 (04): 61-63
[3] 余艳, 陈少杰, 王驰, 等. 共沉淀法制备MgAl-LDHs及用于吸附去除水中Cr(Ⅵ)[J]. 化工技术与开发, 2022, 51 (05): 14-1825.
[4] 李木子, 郑秀君, 任德财. 焙烧复原法制备山梨酸和苯甲酸插层水滑石及其缓释性能研究[J]. 化学试剂, 2021, 43 (05): 610-616.
[5] 毕浩宇, 葛金宝, 张雅, 等. 纳米Fe3O4@(DS-HTlc)的制备及吸附亚甲基蓝[J]. 水处理技术, 2019, 45 (12): 46-52.
[6] Marinas A, Guillard C, JoséM. M, et al. Photocatalytic degradation of pesticide-acaricide formetanate in aqueous suspension of TiO2[J]. Applied Catalysis B Environmental, 2001, 34(3):241-252.
[7] 马春阳, 吴飞飞, 王金东, 等. 氯氧化铋晶体的制备及其表征研究[J]. 人工晶体学报, 2015, 44(07):1764-1767 +1772.
[8] Shi Z Q, Wang Y, Fan C M, et al. Preparation and photocatalytic activity of BiOCl catalyst[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(10):2254-2258.
[9] Tekin G,Ersoz G,Atalay S,et al.Journal of Environmental Management,2018,228,441.13.