Journal of Modern Life Sciences Research
Journal of Modern Life Sciences Research. 2025; 6: (1) ; 10.12208/j.jlsr.20250004 .
总浏览量: 42
山东理工大学 山东淄博
*通讯作者: 刘艳,单位:山东理工大学 山东淄博;
线粒体作为真核细胞的能量代谢中心和关键信号枢纽,其功能完整性对维持细胞稳态至关重要。近年来,研究表明线粒体功能障碍远非仅是简单的能量供应不足,它涉及活性氧生成失衡、钙稳态失调、代谢重编程以及质量控制机制(如线粒体自噬、动力学)紊乱等多个层面,已成为众多疾病共同的核心病理生理环节。本综述系统梳理了线粒体功能障碍与各类疾病关系的最新研究进展。在代谢领域,功能障碍与胰岛素抵抗、2型糖尿病及昼夜节律紊乱密切相关;在神经系统,它与阿尔茨海默病、亨廷顿病、帕金森病等神经退行性疾病以及精神障碍的因果关系日益明确;在免疫炎症方面,功能障碍深度参与类风湿关节炎、溃疡性结肠炎等自身免疫性疾病的发病。此外,其在心血管疾病、衰老相关疾病、肿瘤发生发展以及肾脏、胎盘相关疾病中的作用也得到深入揭示。本文还展望了针对线粒体的治疗策略,如线粒体靶向抗氧化剂、质量控制调节剂等,并指出未来研究在揭示组织特异性机制、开发精准干预手段方面面临的挑战与机遇。深入理解线粒体功能障碍在疾病中的作用,将为疾病防治提供新靶点和全新视角。
Mitochondria, as the energy metabolism center and key signaling hub of eukaryotic cells, play a crucial role in maintaining cellular homeostasis through their functional integrity. Recent studies have shown that mitochondrial dysfunction is far more than just a simple energy supply shortage; it involves multiple levels such as imbalanced reactive oxygen species (ROS) generation, calcium homeostasis disruption, metabolic reprogramming, and dysregulation of quality control mechanisms (such as mitophagy and dynamics), becoming a core pathological physiological link in many diseases. This review systematically summarizes the latest research progress on the relationship between mitochondrial dysfunction and various diseases. In the field of metabolism, dysfunction is closely related to insulin resistance, type 2 diabetes, and circadian rhythm disorders; in the nervous system, it is increasingly clear that it has a causal relationship with neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and Parkinson's disease, as well as mental disorders; in immunity and inflammation, dysfunction is deeply involved in the pathogenesis of autoimmune diseases such as rheumatoid arthritis and ulcerative colitis. Additionally, its role in cardiovascular diseases, age-related diseases, tumor occurrence and development, as well as kidney and placenta-related diseases, has been thoroughly revealed. This paper also looks forward to treatment strategies targeting mitochondria, such as mitochondria-targeted antioxidants and quality control regulators, and points out the challenges and opportunities for future research in revealing tissue-specific mechanisms and developing precise intervention methods. A deeper understanding of the role of mitochondrial dysfunction in diseases will provide new targets and fresh perspectives for disease prevention and treatment.
[1] 李娜,韩宇博,姚春丽,等. 线粒体功能障碍与胰岛素抵抗关系的研究进展[J].中国医药,2024,19(12):1888-1892.
[2] 刘景彬,查正辉,张玉丽,等.运动改善线粒体功能障碍对脑胰岛素抵抗的影响[C]//中国生理学会运动生理专业委员会,中国生理学会体适能研究专业委员会.中国生理学会运动生理专业委员会与体适能研究专业委员会联合学术会议摘要集.华南师范大学体育科学学院;, 2024: 14-15.
[3] 闫子端,沈土明,张玉丽,等.运动对昼夜节律紊乱和线粒体功能障碍的影响[C]//中国生理学会运动生理专业委员会,中国生理学会体适能研究专业委员会.中国生理学会运动生理专业委员会与体适能研究专业委员会联合学术会议摘要集.华南师范大学体育科学学院;,2024:49-50.
[4] 张晓萌.糖蛋白M6B调控溶酶体功能维持线粒体质量控制和心脏功能的作用和机制研究[D].中国人民解放军空军军医大学,2024.
[5] 何大业.多组学联合解析线粒体相关基因与阿尔茨海默病的因果关系[D].吉林大学,2024.
[6] 路宜贤,郭锦晨,卢佳,等. 线粒体功能障碍在类风湿关节炎发病机制中的研究进展[J].免疫学杂志,2024,40(10): 789-795.
[7] 赵江宇,郭兴. 线粒体功能障碍与亨廷顿病[J].中山大学学报(医学科学版),2024,45(06):941-952.
[8] 姜林.大脑功能—结构耦合与分子交互研究[D].电子科技大学,2024.
[9] 周婉婉.人源线粒体核糖体结合因子hsRBFA和甲基转移酶METTL15相关多元复合物结构与功能的研究[D].中国科学技术大学,2024.
[10] Lin L Y ,Yao T ,Wang W Y , et al. Causal association between mitochondrial function and psychiatric disorders: Insights from a bidirectional two-sample Mendelian randomization study.[J].Journal of affective disorders,2024, 36855-66.
[11] 卢加杰.溃疡性结肠炎生物标志物及线粒体稳态失调在疾病进展中的机制研究[D].新疆医科大学,2024.
[12] 李轶,线粒体相关内质网膜介导的线粒体自噬在肾脏缺血再灌注损伤中的调控作用.甘肃省,兰州大学第二医院,2024-09-01.
[13] 张滨.线粒体靶向性硫化氢供体AP39通过AMPK/UCP2途径减轻阿霉素心脏毒性的机制研究[D].吉林大学,2024.
[14] 郝浓毅.检测线粒体和内质网微环境荧光探针的构建及生物成像[D].济南大学,2024.
[15] 李抗夏,王颖祺,陈采陶,等. 运动康复训练调节线粒体损伤对慢性阻塞性肺疾病骨骼肌功能障碍的影响[J].康复学报,2024,34(04):402-410.
[16] Watanabe M ,Sasaki N . Mechanisms and Future Research Perspectives on Mitochondrial Diseases Associated with Isoleucyl-tRNA Synthetase Gene Mutations[J].Genes, 2024, 15(7): 894-894.
[17] 温丽民,李冉,郝延磊,等. 与MELAS综合征相关的线粒体基因异质性研究进展[J].实用医学杂志,2024, 40(13): 1885-1888.
[18] Wu Y ,Hu H ,Wang T , et al. Characterizing mitochondrial features in osteoarthritis through integrative multi-omics and machine learning analysis[J].Frontiers in Immunology, 2024, 151414301-1414301.
[19] Somasundaram I ,Jain M S ,Chabaud B M , et al. Mitochondrial dysfunction and its association with age-related disorders[J]. Frontiers in Physiology,2024, 151384966 -1384966.
[20] 王新宇.miR-214-3p调控GFM1影响线粒体功能障碍以及多巴胺能神经元功能的研究[D].南京中医药大学,2024.
[21] 汪润姿.应激性情绪障碍中海马线粒体损伤的甲基化修饰机制及预运动的干预效果研究[D].天津体育学院, 2024.
[22] Paolo S ,Anna C ,Chiara B , et al. Mitochondrial iron deficiency triggers cytosolic iron overload in PKAN hiPS-derived astrocytes[J].Cell Death & Disease,2024, 15(5): 361-361.
[23] Roy T ,Padhi S ,Mazumder R , et al. Alleviating Neurodegenerative Diseases Associated with Mitochondrial Defects by Therapeutic Biomolecules.[J]. Current topics in medicinal chemistry, 2024, 24(16):1377-1407.
[24] Li L ,Liu F ,Feng C , et al. Role of mitochondrial dysfunction in kidney disease: Insights from the cGAS-STING signaling pathway.[J].Chinese medical journal, 2024, 137(9): 1044-1053.
[25] Encina C M ,Booth K L ,Redgrave E R , et al. Cellular Senescence, Mitochondrial Dysfunction, and Their Link to Cardiovascular Disease[J].Cells,2024,13(4):353.
[26] Choudhury C ,Gill K M ,McAleese E C , et al. The Arylamine N-Acetyltransferases as Therapeutic Targets in Metabolic Diseases Associated with Mitochondrial Dysfunction.[J].Pharmacological reviews,2024,76(2):300-320.
[27] Wu Y ,Li M ,Ying H , et al. Mitochondrial quality control alterations and placenta-related disorders[J].Frontiers in Physiology,2024,151344951-1344951.
[28] Liu Z ,Qiang Y ,Shan S , et al. Carbon disulfide induces accumulation of TDP-43 in the cytoplasm and mitochondrial dysfunction in rat spinal cords.[J].Cerebral cortex (New York, N.Y. : 1991),2024,
[29] 马玉林,李铁军. 溃疡性结肠炎中线粒体功能障碍的产生及机制研究进展[J].中南药学,2023,21(12):3115-3121.
[30] 张睿,氧化应激通过下调抗增殖蛋白2抑制海马神经元线粒体自噬参与糖尿病认知功能障碍的机制.河北省,河北医科大学第一医院,2023-12-08.
[31] 牛小伟,Oip5-as1作为“分子脚手架”抑制心肌缺血再灌注损伤中线粒体异常分裂的机制研究.甘肃省,兰州大学第一医院,2023-12-01.
[32] 王斌.TUFM调节线粒体功能促进脑胶质瘤细胞增殖的分子机制[D].云南大学,2023.
[33] 邹育池.内质网应激对小鼠骨髓间充质干细胞衰老的影响及其机制研究[D].中国人民解放军陆军军医大学, 2023.
[34] 张林雁.多发性硬化症EAE模型海马区的转录组分析及线粒体自噬基因的筛选及研究[D].昆明医科大学,2023.
[35] 李国栋,李改杰,李丽,等. 基于线粒体功能障碍探讨气虚的生物学基础[J].环球中医药,2023,16(09):1844-1847.
[36] 张思明.抑制PARP-1可以协同压制线粒体自噬保护视网膜抵御光损伤[D].吉林大学,2023.
[37] Shun N ,Naoki I ,Isshin S , et al. Ubiquitin-mediated mitochondrial regulation by MITOL/MARCHF5 at a glance.[J].Journal of biochemistry,2022,173(1).
[38] Tianlin J ,Jiahua W ,Chao L , et al. Prohibitins: A Key Link between Mitochondria and Nervous System Diseases[J]. Oxidative Medicine and Cellular Longevity,2022, 20227494863 -7494863.
[39] Yao T ,Yuanliangzi T ,Zhixiao Y , et al. Iron Metabolism in Aging and Age-Related Diseases[J].International Journal of Molecular Sciences,2022,23(7):3612-3612.
[40] Qin Z ,Chunwen C ,Jingyan Y . Kearns–Sayre syndrome with a novel large-scale deletion: a case report[J].BMC Ophthalmology,2022,22(1):