[email protected]

电气工程与自动化

Journal of Electrical Engineering and Automation

您当前位置:首页 > 精选文章

Journal of Electrical Engineering and Automation. 2025; 4: (6) ; 10.12208/j.jeea.20250203 .

Stability analysis and oscillation suppression strategy for direct-drive wind farms via MMC-HVDC transmission systems
直驱风电厂经MMC-HVDC外送系统稳定性分析及振荡抑制策略

作者: 刘程子 *, 尹永胜, 沈周钰, 葛辉, 杨艳

南京邮电大学自动化学院 江苏南京

*通讯作者: 刘程子,单位:南京邮电大学自动化学院 江苏南京;

引用本文: 刘程子, 尹永胜, 沈周钰, 葛辉, 杨艳 直驱风电厂经MMC-HVDC外送系统稳定性分析及振荡抑制策略[J]. 电气工程与自动化, 2025; 4: (6) : 25-36.
Published: 2025/11/11 10:50:56

摘要

柔性高压直流输电技术(VSC-HVDC)已广泛应用于海上风电并网及远距离新能源输送,为新能源大规模接入电网提供了关键支撑。但风电场接入基于模块化多电平换流器的高压直流(MMC-HVDC)输电系统后,系统多控制环节间的耦合易引发小信号不稳定问题,威胁电网安全运行。尤其是在低频段,锁相环的动态特性与电流/电压控制环的交互作用,可能导致近工频振荡。为此,本文基于阻抗稳定性分析理论,研究风电柔直系统的建模与振荡抑制问题。首先,采用多谐波线性化方法,分别建立风电场与MMC的交流侧小信号阻抗模型,并通过扫频验证了理论阻抗的准确性。然后,基于阻抗稳定性分析理论,揭示系统各控制环节参数对稳定性的影响,并提出一种基于风电场侧锁相环的附加阻尼控制策略,通过引入二阶高通滤波器增强系统阻尼,有效抑制近工频振荡。最后搭建时域仿真模型,验证了所提方法对近工频振荡抑制的有效性。

关键词: 风电并网;MMC-HVDC;多谐波线性化;阻抗模型;稳定性分析;锁相环;近工频振荡抑制

Abstract

Voltage Source Converter-based High Voltage Direct Current (VSC-HVDC) technology has been widely applied in offshore wind power grid integration and long-distance renewable energy transmission, providing critical support for large-scale renewable energy integration into the power grid. However, when wind farms are connected through Modular Multilevel Converter-based HVDC (MMC-HVDC) systems, the coupling among multiple control loops may induce small-signal instability issues, posing a threat to the secure operation of the power system. In particular, at low-frequency ranges, the dynamic interaction between the phase-locked loop (PLL) and the current/voltage control loops can lead to near fundamental frequency oscillations. This paper investigates the modeling and oscillation suppression of wind power flexible DC transmission systems based on impedance stability analysis theory. Firstly, a multi-harmonic linearization method is employed to establish the AC-side small-signal impedance models of both the wind farm and the MMC, with the theoretical impedance validated by frequency sweep tests. Subsequently, based on impedance stability analysis, the impact of control loop parameters on system stability is revealed. A supplementary damping control strategy centered on the wind farm-side PLL is proposed, which enhances system damping by introducing a second-order high-pass filter, effectively suppressing near fundamental frequency oscillations. Finally, a time-domain simulation model is developed to verify the effectiveness of the proposed approach in mitigating near fundamental frequency oscillations.

Key words: Wind power grid integration; MMC-HVDC; Multi-harmonic linearization; Impedance modeling; Stability analysis; Phase-locked loop (PLL); Near fundamental frequency oscillation suppression

参考文献 References

[1] 晁晨栩, 郑晓冬, 叶海, 等. 针对海上风电场汇集线路单相接地故障的柔直侧新型距离保护方案[J]. 中国电机工程学报, 2024, 44 (15): 5899-5908.

[2] 李梓丘, 乔颖, 鲁宗相. 海上风电-氢能系统运行模式分析及配置优化[J].电力系统自动化,2022,46(08):104-112.

[3] 葛俊, 贺之渊, 杨杰, 等. 先进输电技术的发展与趋势[J].新型电力系统,2023,1(02):132-144.

[4] 谢小荣, 贺静波, 毛航银, 等. “双高”电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-475.

[5] Saad H, Fillion Y, Deschanvres S, et al. On Resonances and Harmonics in HVDC-MMC Station Connected to AC Grid[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1565-1573.

[6] 吴俊, 方芳, 赵晓明, 等. 柔性直流输电舟洋换流器无源HVDC启动试验中典型故障分析[J]. 浙江电力, 2016, 35(1): 6-9.

[7] 高本锋, 刘培鑫, 刘王锋, 等. 直驱风电场并网对火电机组次同步谐振影响 [J]. 电工技术学报, 2024, 39 (11): 3308-3322.

[8] 华文, 王龙飞, 周正阳, 等.含异步电动机负荷的MMC-HVDC供电系统小干扰电压稳定性分析[J].太阳能学报,2023,44(10):28-37.

[9] Federico M. Advances in Power System Modeling, Control and Stability Analysis[M]. The Institution of Engineering and Technology, 2016: 377.

[10] 潘荣才. 海上风电柔性直流送出系统主动支撑控制方法研究[D].中国电力科学研究院,2024.

[11] 郭春义, 殷子寒, 赵成勇.MMC-HVDC系统在整流和逆变工作模式下的小干扰稳定性对比研究[J].中国电机工程学报,2018,38(24):7349-7358+7461.

[12] 陈新, 王赟程, 龚春英, 等.采用阻抗分析方法的并网逆变器稳定性研究综述[J].中国电机工程学报,2018, 38(7):2082-2094.

[13] Roinila T, Vilkko M, Sun J. Broadband methods for online grid impedance measurement[C]. IEEE Energy Conversion Congress and Exposition, Denver, America, 2013.

[14] Roinila T, Vilkko M, Sun J. Online grid impedance measurement using discrete-interval binary sequence injection[J]. IEEE Journal of Emerging and selected topics in power electronics,2014, 2(4): 985-993.

[15] 李冠群. 风电经柔直并网系统高频振荡与暂态稳定性研究[D].山东大学,2023.

[16] 管敏渊,徐政. 向无源网络供电的MMC型直流输电系统建模与控制[J].电工技术学报,2013,28(02):255-263.

[17] Du C, Bollen M, Agneholm E, et al. A new control strategy of a VSC-HVDC system for high-quality supply of industrial plants[J]. IEEE Transactions on Power Delivery, 2007, 22(4): 2386-2394.

[18] 吕敬, 蔡旭.基于谐波线性化的模块化多电平换流器阻抗建模[J].电力系统自动化,2017,41(4):136-142.

[19] Beza M, Bongiorno M, Stamatiou G. Analytical derivation of the AC-side input admittance of a modular multilevel converter with open- and closed-loop control strategies[J]. IEEE Transactions on Power Delivery, 2018, 33(1): 248-256.

[20] 年珩, 朱茂玮, 徐韵扬, 等. 双闭环定交流电压控制下MMC换流站阻抗建模及稳定性分析[J].电力系统自动化,2020,44(04):81-90.

[21] Sun J, Liu H. Impedance modeling and analysis of modular multilevel converters[C]. IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, Norway, 2016.

[22] 郭贤珊, 刘泽洪, 李云丰, 等. 柔性直流输电系统高频振荡特性分析及抑制策略研究[J].中国电机工程学报, 2020, 40(01):19-29+370.

[23] Zou Changyue, Rao Hong, Xu Shukai, et al, Analysis of resonance between a VSC-HVDC converter and the AC grid[J]. IEEE Transactions on Power Electronics, 2018, 33(12): 10157-11016. 

[24] 韦超, 林磊, 朱建行, 等. 基于锁相优化的MMC高频振荡抑制方案研究[J]. 高电压技术, 2022, 48(07): 2805-2816.

[25] 吕敬, 蔡旭. 提高风场柔直并网系统稳定性的控制器参数优化设计[J]. 中国电机工程学报, 2018, 38(02): 431-443+674.

[26] Ji K, Tang G, Yang J, et al. Harmonic stability analysis of MMC-Based DC system using DC impedance model[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019.

[27] 刘瑜超. 基于模块化多电平换流器的直流输电系统控制策略研究[D]. 哈尔滨工业大学, 2017.

[28] 郭贤珊, 刘泽洪, 李云丰, 等. 柔性直流输电系统高频振荡特性分析及抑制策略研究[J].中国电机工程学报, 2020, 40(01): 19-29+370.

[29] 伍文华, 周乐明, 陈燕东, 等. 序阻抗视角下虚拟同步发电机与传统并网逆变器的稳定性对比分析[J]. 中国电机工程学报, 2019, 39(05): 1411-1421.

[30] 苑宾, 许建中, 赵成勇, 等. 利用虚拟电阻提高接入弱交流电网的 MMC小信号稳定性控制方法[J]. 中国电机工程学报, 2015, 35(15): 3794-3802.

[31] 于 婧,林鸿飞,王 潇,等. 直驱风电场经柔直送出系统近工频正/负序振荡机理分析[J]. 电力建设,2024,45(2):10-25.

[32] 马燕峰, 赵书强. 用改进的Hilbert-Huang变换辨识电力系统低频振荡[J]. 高电压技术,2012,38(6):1492-1499.

[33] 董航, 刘涤尘, 邹江峰. 基于Prony算法的电力系统低频振荡分析[J]. 高电压技术,2006,32(6):97-100.