Physical Science and Technical Research
Physical Science and Technical Research. 2025; 5: (1) ; 10.12208/j.pstr.20250008 .
总浏览量: 54
1 大连理工大学物理学院 辽宁大连
2 大连科技学院工训中心 辽宁大连
*通讯作者: 赵书霞,单位: 大连理工大学物理学院 辽宁大连;
本文基于Ar/SF6感性耦合放电流体力学模拟随时间的演化过程,演绎出该等离子体源的放电结构层次,重点讨论了居于放电结构核心的自凝聚动力学过程,揭示了它的物理思想、数学语言,以及在核聚变领域的应用前景。其中对其应用前景的预测主要依赖于自凝聚过程的一个显著特征,即体积越大,物质自凝聚形成的密度越高。最后比较了自凝聚过程和太阳核聚变的内在驱动力大小,即静电力和万有引力,并由此粗浅地估计了人造的、自由核聚变可能发生的尺度范围。
The complex discharge structure hierarchy of Ar/SF6 inductively coupled discharge is revealed based on the temporal evolution of fluid simulation of this source. Among this, the self-coagulation dynamics lied in the core of discharge structure hierarchy is emphasized and the physics idea, the mathematical language, and the potential application of self-coagulation in the fusion field are described. Herein, the prediction of self-coagulation application in fusion is based on one of its key characteristics, i.e., the coagulated mass density is higher in a larger volume.
[1] LIBERMAN M. M. and Lichtenberg A. J. Principles of Plasma Discharges and Materials processing[M], 2nd ed.; Wiley-Interscience: New York, America, 2005: 1-20 & 135-136 & 256-258.
[2] CHABERT P. and BRAITHWAITE N. Physics of Radio-Frequency Plasmas[M], Cambridge University Press: New York, America, 2011: 3-8.
[3] 徐学基,诸定昌. 气体放电物理[M]. 上海:复旦大学出版社,1996:121-158.
[4] 杨津基. 气体放电[M]. 北京:科学出版社,1983:105-115.
[5] TIAN YU and ZHAO SHUXIA. Self-coagulation theory and related comet- and semi-circle-shaped structures in electronegative and gaseous discharging plasmas in the laboratory[J]. Applied Science, 2024, 14: 8041.
[6] ZHAO SHUXIA, TANG ANQI, and TIAN YU. Discharge structure of Ar/Cl2 inductively coupled plasma: A cyclic study of discharge conditions at fixed power[J]. Journal of Technological and Space Plasmas, 2025, 1(1): 218-249.
[7] ZHAO SHUXIA. Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity[J]. Chinese Physics B, 2021, 30(5): 055201.
[8] ZHAO SHUXIA and LI JINGZE. Delta distribution of electronegative plasma predicted by reformed “spring oscillator” dynamic equation with dispersing force[J]. Chinese Physics B, 2021, 30(5): 055202.
[9] TANG RUIJI, ZHAO SHUXIA and TIAN YU, Discharge structure hierarchy of highly electronegative plasma at low pressure and quasi- cold ion approximation. Under review by the journal of Physics of Fluid and available in Arxiv website soon.
[10] ZHAO SHUXIA and TIAN YU, Discharge structure theory of highly electronegative plasma and its hierarchy and interdisciplinary meanings. Submitted to Journal of Mathematical Physics and available in the Arxiv website with the Code. 2504. 14155.
[11] Unlocking the Secrets of Electronegative Plasmas at Low Pressure, The Science Archive, 2025.
[12] LICHTENBERG A. J., VAHEDI V., LIEBERMAN M. A., and ROGNLIEN T. Modeling electronegative plasma discharges[J]. Journal Applied Physics, 1994, 75(5): 2339-2347.
[13] LICHTENBERG A. J., KOUZNETSOV I. G., LEE Y. T., LIEBERMAN M. A., KAGANOVICH I. D., and TSENDIN L. D. Modelling plasma discharges at high electronegativity [J]. Plasma Sources Science and Technology, 1997, 6(3): 437-449.
[14] SHERIDEN T. E., CHABERT P., and BOSWELL R. W. Positive ion flux from a low-pressure electronegative discharge[J]. Plasma Sources Science and Technology, 1999, 8(3): 457-462.
[15] SHERIDEN T. E. Double layers in a modestly collisional electronegative discharge[J]. Journal Physics D: Applied Physics, 1999, 32(15): 1761-1767.
[16] VENDER D., STOFFELS W. W. STOFFELS E., et al. Charged-species profiles in electronegative radio-frequency plasma[J]. Physical Review E, 1995, 51(3): 2436-2444.
[17] BEREZHNOJ S. V. SHIN C. B., BUDDEMEIER U., et al. Charged species profiles in oxygen plasma[J]. Applied Physics Letters, 2000, 77(6): 800-802.
[18] KOUJI K., KIMURA T., IMAEDA T., et al. Spatial structure of electronegative Ar/CF4 plasmas in capacitive RF discharges[J]. Japanese Journal of Applied Physics, 2001, 40(10): 6115-6116.
[19] BOGDANOV E. A., KUDRYAVTSEV A. A., and OCHIKOVA Z. S. Main scenarios of spatial distribution of charged and neutral components in SF6 plasma[J]. IEEE Transactions on Plasma Science, 2013, 41(12): 3254-3267.
[20] ZHAO SHUXIA. Non-monotonic behavior of electron temperature in argon inductively coupled plasma and its analysis via novel electron mean energy equation[J]. Physics of Plasmas, 2018, 25(3): 033516.
[21] 江帆,温锦峰,谢智铭,叶宇星。有限元基础与COMSOL案例分析[M]. 北京:人民邮电出版社,2024.
[22] FRANKLIN R. N., DANIELS P. G., and SNELL J. Characteristics of electric discharges in the halogens: the recombination-dominated positive column[J]. Journal of Physics D: Applied Physics, 1993, 26(10), 1638-1649.
[23] LAMPE M., MANHEIMER W. M., FERNSLER R. F., et al. The physical and mathematical basis of stratification in electronegative plasmas. Plasma Sources Science and Technology, 2004, 13(1): 15-26.
[24] 戴忠玲. 射频及脉冲偏压等离子体鞘层流体动力学模拟[D]. 大连理工大学,2004.
[25] SUN YUANHE, ZHAO SHUXIA, TANG RUIJI, and TIAN YU. Discharge structure hierarchy of highly electronegative plasma and the implication on nuclear fusion at low pressure and quasi- cold ions approximation. Available at Arxiv website with the code, 2502.16452.
[26] Fridman A. Plasma Chemistry. New York: Cambridge University Press, 2008.
[27] 欧阳吉庭,何峰,韩若愚。低温等离子体:原理与应用。北京:科学出版社,2024.