[email protected]

科学发展研究

Scientific Development Research

您当前位置:首页 > 精选文章

Scientific Development Research . 2025; 5: (6) ; 10.12208/j.sdr.20250235 .

Research progress of crime prediction based on machine learning
基于机器学习的犯罪预测研究进展

作者: 张耀峰1,2,3, 姚金伶2,4 *, 徐旭1,3, 王睿1,2

1 湖北经济学院新财经交叉学科研究院 湖北武汉
2 湖北经济学院湖北数字政府建设研究中心 湖北武汉
3 湖北经济学院湖北数据与分析中心 湖北武汉
4 湖北经济学院金融学院 湖北武汉

*通讯作者: 姚金伶,单位:;

引用本文: 张耀峰, 姚金伶, 徐旭, 王睿 基于机器学习的犯罪预测研究进展[J]. 科学发展研究, 2025; 5: (6) : 53-73.
Published: 2025/10/20 23:13:30

摘要

犯罪预测是预防犯罪的一项技术方法。近年来,随着大数据技术和人工智能的兴起,机器学习方法被引入到犯罪预测的研究中,取得了丰富的研究成果。本文系统梳理了基于机器学习的犯罪预测研究进展,从环境犯罪学理论出发总结了犯罪预测的理论基础与方法演进,阐述了机器学习模型在犯罪预测中的主要技术路径。研究从预测对象和预测场景两个维度,重点分析了机器学习方法在犯罪趋势预测、犯罪热点预测、犯罪时空预测、犯罪类型识别以及犯罪嫌疑人预测及其落脚点预测等方面的应用,并归纳其在侵财、凶杀、金融及网络犯罪等典型领域的研究成果。结果表明,机器学习方法能够有效提升犯罪预测的准确性与实时性,为社会治安防控提供新思路。然而,当前研究仍面临数据稀疏性、时空相关性处理、区域划分合理性、模型可解释性、预测效果评价、伦理与隐私保护等方面的挑战。

关键词: 机器学习;犯罪预测;时空预测;犯罪场景

Abstract

Crime prediction serves as a technical approach to crime prevention. In recent years, with the rapid development of big data and artificial intelligence, machine learning methods have been increasingly applied to crime prediction, yielding substantial research progress. This paper provides a systematic review of research advancements in crime prediction based on machine learning. Grounded in environmental criminology, it summarizes the theoretical foundations and methodological evolution of crime prediction, and outlines the main technical pathways of machine learning models in this field. From the dual perspectives of prediction targets and prediction scenarios, this study focuses on the applications of machine learning in crime trend prediction, crime hotspot detection, spatiotemporal crime forecasting, crime type identification, as well as suspect and offender location prediction. It further synthesizes representative findings across major crime categories, including property crimes, homicides, financial crimes, and cybercrimes. The results indicate that machine learning approaches can significantly enhance the accuracy and timeliness of crime prediction, offering new insights for social security and crime prevention. Nevertheless, current research still faces challenges in data sparsity, spatiotemporal correlation processing, regional partitioning rationality, model interpretability, prediction performance evaluation, as well as ethical and privacy protection issues.

Key words: Machine learning; Crime prediction; Spatio-temporal prediction; Crime scene

参考文献 References

[1] Jeffery C R. Crime prevention through environmental design[M]. CA:Sage, 1971.

[2] Cornish D B, Clarke R V. The reasoning criminal: rational choice perspectives on offending[M]. New York: Springer-Ver-lag, 1986.

[3] Cohen L E, Felson M. Social change and crime rate trends: A routine activity approach[J]. American Sociological Review, 1979, 44(4): 588-608.

[4] Brantingham P J, Brantingham P L. Patterns in crime[M]. New York: Macmillan, 1984.

[5] Brantingham P L, Brantingham P J. Environment, routine, and situation: toward a pattern theory of crime[J]. Routine Activity and Rational Choice, 1993, 5: 259-294.

[6] Farrell G, Pease K. Once bitten, twice bitten: Repeat victimisation and its implications for crime prevention[M]. London: Home Office Police Research Group, 1993.

[7] Townsley M. Infectious Burglaries. A test of the near repeat hypothesis[J]. British Journal of Criminology, 2003, 43(3): 615-633.

[8] Ellis L, Walsh A. Criminology: A global perspective[M]. Boston: Allyn and Bacon, 2000.

[9] Singh J P, Grann M, Fazel S. A comparative study of violence risk assessment tools: A systematic review and metaregression analysis of 68 studies involving 25,980 participants[J]. Clinical Psychology Review, 2011, 31(3): 499-513.

[10] Braga A A, Weisburd D L. The effects of focused deterrence strategies on crime: A systematic review and meta-analysis of the empirical evidence[J]. Journal of Research in Crime and Delinquency, 2012, 49(3): 323-358.

[11] Wand M P, Jones M C. Comparison of smoothing parameterizations in bivariate kernel density Estimation[J]. Journal of the American Statistical Association, 1993, 88(422): 520-528.

[12] Bowers K J, Johnson S D, Pease K. Prospective hot-spotting: the future of crime mapping? [J]. British Journal of Criminology, 2004, 44(5): 641-658.

[13] Chainey S, Tompson L, Uhlig S. The utility of hotspot mapping for predicting spatial patterns of crime[J]. Security Journal, 2008, 21(1): 4-28.

[14] Fielding M, Jones V. ‘Disrupting the optimal forager’: predictive risk mapping and domestic burglary reduction in Trafford, Greater Manchester[J]. International Journal of Police Science & Management, 2012, 14(1): 30-41.

[15] Caplan J M, Kennedy L W. Risk terrain modeling compendium[J]. Rutgers Center on Public Security, Newark, 2011: 51.

[16] Caplan J M, Kennedy L W, Piza E L, et al. Using vulnerability and exposure to improve robbery prediction and target area selection[J]. Applied Spatial Analysis and Policy, 2020, 13(1): 113-136.

[17] Mohler G O, Short M B, Brantingham P J, et al. Self-exciting point process modeling of crime[J]. Journal of the American Statal Association, 2011, 106(493): 100-108.

[18] Reinhart A, Greenhouse J. Self-exciting point processes with spatial covariates: modelling the dynamics of crime[J]. Journal of the Royal Statal Society, 2018, 67(5): 1305-1329.

[19] Mohler G O, Short M B, Brantingham P J. The concentration-dynamics tradeoff in crime hot spotting[A]. Unraveling the crime-place connection[M]. New York: Routledge, 2017: 19-39.

[20] Short M B, Mohler G O, Brantingham P J, et al. Gang rivalry dynamics via coupled point process networks[J]. Discrete and Continuous Dynamical Systems Series B, 2014, 19(5): 1459-1477.

[21] Johnson S D, Bowers K J. The burglary as clue to the future: The beginnings of prospective hot-spotting[J]. European Journal of Criminology. 2004, 1(2): 237-255.

[22] 吴玲. 入室盗窃近重复现象研究及其警务应用[J]. 湖北警官学院学报, 2014, 27(8): 154-157.

[23] Farrell G, Phillips C, Pease K. Like taking candy-why does repeat victimization occur[J]. Brit. J. Criminology, 1995, 35: 384.

[24] Brantingham P J, Brantingham P L. The geometry of crime and crime pattern theory[M]//Environmental criminology and crime analysis. Routledge, 2016: 117-135.

[25] Wortley R K, Mazerolle L A. Environmental Criminology and Crime Analysis[M]. Devon: Willan Publishers, 2008.

[26] McKay, D Henry. Juvenile delinquency and urban areas: a study of rates of delinquents in relation to differential characteristics of local communities in American cities [M]. Chicago: University of Chicago Press, 1942.

[27] Hough M, Tilley N. Getting the grease to the squeak: Research lessons for crime prevention[M]. London: Home Office, 1998.

[28] Vigne N, Wartell J. Crime mapping case studies: Successes in the field[M]. Washington: Police Executive Research Forum, 1998.

[29] Harries K D. Mapping crime: Principle and practice[M]. Washington: US Department of Justice, Office of Justice Programs, National Institute of Justice, 1995.

[30] Goldsmith V, McGuire P G, Mollenkopf J B, et al. Analyzing crime patterns: Frontiers of practice[M]. London: Sage Publications, 1999.

[31] Chainey S, Ratcliffe J. GIS and crime mapping[M]. New Jersey: John Wiley & Sons Inc, 2005.

[32] Johnson S D, Bernasco W, Bowers K J, et al. Space-time patterns of risk: A cross national assessment of residential burglary victimization[J]. Journal of Quantitative Criminology, 2007, 23(3): 201-219.

[33] Johnson S D. Repeat burglary victimisation: A tale of two theories[J]. Journal of Experimental Criminology, 2008, 4(3): 215-240.

[34] Takahashi K, Kulldorff M, Tango T, et al. A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring[J]. International Journal of Health Geographics, 2008, 7(14): 14-14.

[35] Short M B, Bertozzi A L, Brantingham P J. Nonlinear patterns in urban crime: Hotspots, bifurcations, and suppression[J]. SIAM Journal on Applied Dynamical Systems, 2010, 9(2): 462-483.

[36] Short M B, Brantingham P J, Bertozzi A L, et al. Dissipation and displacement of hotspots in reaction-diffusion models of crime[J]. Proceedings of the National Academy of Sciences, 2010, 107(9): 3961-3965.

[37] Short M B, D'orsogna M R, Pasour V B, et al. A statistical model of criminal behavior[J]. Mathematical Models and Methods in Applied Sciences, 2008, 18(1): 1249-1267.

[38] Cover T M, Hart P E. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.

[39] Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers[J]. Machine Learning, 1997, 29(2): 131-163.

[40] Vapnik V N, Chervoneva A Y. On class of perceptrons[J]. Automation and Remote Control, 1964, 25(1): 821-837.

[41] Hunt E B, Marin J, Stone P J. Experiments in induction[M]. New York: Wiley, 1966.

[42] Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32.

[43] Franklin J. The elements of statistical learning: data mining, inference and prediction[J]. The Mathematical Intelligencer, 2005, 27(2): 83-85.

[44] Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.

[45] 魏智远. 刑事犯罪回归分析与数量预测[J]. 公安大学学报, 1993(1): 47–51.

[46] Zhang G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50: 159-175.

[47] Gorr W, Olligschlaeger A, Thompson Y. Short-term forecasting of crime[J]. International Journal of Forecasting, 2003, 19(4): 579–594.

[48] 屈茂辉, 郝士铭. 基于ARMA模型的我国财产类犯罪人数预测研究[J]. 中国刑事法杂志, 2013(4): 100–106.

[49] Chen P, Yuan H, Shu X. Forecasting crime using the arima model[A]. 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery[C]. Piscataway: IEEE, 2008, 5: 627-630.

[50] 侯苗苗, 胡啸峰. 基于时间序列模型SARIMA的犯罪预测研究[J]. 中国人民公安大学学报(自然科学版), 2021, 27(2): 67–73.

[51] Feng M, Zheng J, Ren J, et al. Big data analytics and mining for effective visualization and trends forecasting of crime data[J]. IEEE Access, 2019, 7(99): 106111-106123.

[52] 颜靖华,侯苗苗. 基于LSTM网络的盗窃犯罪时间序列预测研究[J]. 数据分析与知识发现, 2020, 4(11): 84-91.

[53] Butt UM, Letchmunan S, Hassan FH, Koh TW. Leveraging transfer learning with deep learning for crime prediction [J]. PLoS ONE, 2024, 19 (4): e0296486.

[54] Ivanyuk V. Forecasting of digital financial crimes in Russia based on machine learning methods[J]. Journal of Computer Virology and Hacking Techniques, 2024, 20: 349–362.

[55] Bappee FK, Soares A, Petry LM, Matwin S. Examining the impact of cross-domain learning on crime prediction[J]. Journal of Big Data, 2021, 8 (1): 1 - 27.

[56] 黄娜, 何泾沙, 孙靖超, 等. 基于改进LSTM网络的犯罪态势预测方法[J]. 北京工业大学学报, 2019, 45(8): 742-748.

[57] Gao Y, Yin D, Zhao X, et al. Prediction of Telecommunication Network Fraud Crime Based on Regression‐LSTM Model[J]. Wireless Communications and Mobile Computing, 2022, 2022(1): 3151563.

[58] Biswas A A, Basak S. Forecasting the trends and patterns of crime in bangladesh using machine learning model[A]. 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT)[C]. Piscataway: IEEE, 2019: 114-118.

[59] 于红志, 刘凤鑫, 邹开其. 改进的模糊BP神经网络及在犯罪预测中的应用[J]. 辽宁工程技术大学学报(自然科学版), 2012, 31(02): 244-247.

[60] Gallison J K, Andresen M A. Crime and public transportation: a case study of Ottawa’s O-Train system[J]. Canadian Journal of Criminology and Criminal Justice, 2017, 59(1): 94-122.

[61] Kianmehr K, Alhajj R. Crime hot-spots prediction using support vector machine[A]. IEEE International Conference on Computer Systems and Applications[C]. Los Alamitos: IEEE Computer Society, 2006: 952-959.

[62] Kianmehr K, Alhajj R. Effectiveness of support vector machine for crime hot-spots prediction[J]. Applied Artificial Intelligence, 2008, 22(5): 433-458.

[63] Guevara C, Santos M. Crime prediction for patrol routes generation using machine learning[A]. Computational Intelligence in Security for Information Systems Conference[C]. Cham: Springer, 2019: 97-107.

[64] 石汝楠, 王聪. 基于改进K-means算法的犯罪预测模型[J]. 警学研究, 2021(02): 51-60.

[65] Kouziokas G N. The application of artificial intelligence in public administration for forecasting high crime risk transportation areas in urban environment[J]. Transportation Research Procedia, 2017, 24: 467-473.

[66] Sathyadevan S, Devan M S, Gangadharan S S. Crime analysis and prediction using data mining[A]. 2014 First International Conference on Networks & Soft Computing (ICNSC2014)[C]. Piscataway: IEEE, 2014: 406-412.

[67] Emmanuel A, Elisha O O, Danison T, et al. Crime prediction using decision tree (J48) classification algorithm[J]. International Journal of Computer and Information Technology, 2017, 6(3): 188-195.

[68] Bogomolov A, Lepri B, Staiano J, et al. Once upon a crime: towards crime prediction from demographics and mobile data[C]. Proceedings of the 16th international conference on multimodal interaction, 2014: 427-434.

[69] Huang Y Y, Li C T, Jeng S K. Mining location-based social networks for criminal activity prediction[A]. 2015 24th Wireless and Optical Communication Conference (WOCC)[C]. Piscataway: IEEE, 2015: 185-189.

[70] Kadar C, Maculan R, Feuerriegel S. Public decision support for low population density areas: An imbalance-aware hyper-ensemble for spatio-temporal crime prediction[J]. Decision Support Systems, 2019, 119: 107-117.

[71] Zhang Q, Yuan P, Zhou Q, et al. Mixed spatial-temporal characteristics based crime hot spots prediction[A]. 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD)[C]. Piscataway: IEEE, 2016: 97-101.

[72] Lin Y L, Yen M F, Yu L C. Grid-based crime prediction using geographical features[J]. ISPRS International Journal of Geo-Information, 2018, 7(8): 298-314.

[73] 沈寒蕾, 张虎, 张耀峰, 等. 基于长短期记忆模型的入室盗窃犯罪预测研究[J]. 统计与信息论坛, 2019, 34(11): 107-115.

[74] Rummens A, Hardyns W, Pauwels L. The use of predictive analysis in spatiotemporal crime forecasting: Building and testing a model in an urban context[J]. Applied Geography, 2017, 86: 255-261.

[75] Zhuang Y, Almeida M, Morabito M, et al. Crime hot spot forecasting: A recurrent model with spatial and temporal information[A]. 2017 IEEE International Conference on Big Knowledge (ICBK)[C]. Piscataway: IEEE, 2017: 143-150.

[76] Yu C H, Ding W, Chen P, et al. Crime forecasting using spatio-temporal pattern with ensemble learning[A]. Pacific-Asia Conference on Knowledge Discovery and Data Mining[C]. Cham: Springer, 2014: 174-185.

[77] Zhang X, Liu L, Xiao L, et al. Comparison of machine learning algorithms for predicting crime hotspots[J]. IEEE Access, 2020, 8: 181302-181310.

[78] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.

[79] Qian Y, Pan L, Wu P, et al. GeST: A grid embedding based spatio-temporal correlation model for crime prediction[A]. 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC)[C]. Piscataway: IEEE, 2020: 1-7.

[80] 肖延辉, 王欣, 冯文刚, 等. 基于长短记忆型卷积神经网络的犯罪地理位置预测方法[J]. 数据分析与知识发现, 2018, 2(10): 15-20.

[81] Rumi S K, Deng K, Salim F D. Crime event prediction with dynamic features[J]. EPJ Data Science, 2018, 7(1): 43-70.

[82] Huang C, Zhang J, Zheng Y, et al. DeepCrime: Attentive hierarchical recurrent networks for crime prediction[A]. Proceedings of the 27th ACM International Conference on Information and Knowledge Management[C]. New York: ACM, 2018: 1423-1432.

[83] Wang Y, Ge L, Li S, et al. Deep temporal multi-graph convolutional network for crime prediction[A]. International Conference on Conceptual Modeling[C]. Cham: Springer, 2020: 525-538.

[84] Mao Y, Yin L, Zeng M, et al. Review of Empirical Studies on Relationship between Street Environment and Crime[J]. Journal of Planning Literature, 2021, 36(2): 187-202.

[85] Lu Y, Chen X. On the false alarm of planar K-function when analyzing urban crime distributed along streets[J]. Social science research, 2007, 36(2): 611-632.

[86] Rosser G, Davies T, Bowers K J, et al. Predictive crime mapping: arbitrary grids or street networks?[J]. Journal of Quantitative Criminology, 2017, 33(3): 569-594.

[87] Zhang Y, Cheng T. Graph deep learning model for network-based predictive hotspot mapping of sparse spatio-temporal events[J]. Computers Environment and Urban Systems, 2019, 79.

[88] Baculo M J C, Marzan C S, de Dios Bulos R, et al. Geospatial-temporal analysis and classification of criminal data in manila[A]. 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)[C]. Piscataway: IEEE, 2017: 6-11.

[89] Alparslan Y, Panagiotou I, Livengood W, et al. Perfecting the Crime Machine[J]. arXiv preprint arXiv:2001.09764, 2020.

[90] Wu S, Wang C, Cao H, et al. Crime prediction using data mining and machine learning[A]. International Conference on Computer Engineering and Networks[C]. Cham: Springer, 2018: 360-375.

[91] Almanie T, Mirza R, Lor E. Crime prediction based on crime types and using spatial and temporal criminal hotspots[J]. Computer Science, 2015, 5(4): 1-19.

[92] Iqbal R, Murad M A A, Mustapha A, et al. An experimental study of classification algorithms for crime prediction[J]. Indian Journal of Science and Technology, 2013, 6(3): 4219-4225.

[93] Rui Y, Olafsson S. Classification for predicting offender affiliation with murder victims[J]. Expert Systems with Applications, 2011, 38(11): 13518-13526.

[94] Nguyen T T, Hatua A, Sung A H. Building a learning machine classifier with inadequate data for crime prediction[J]. Journal of Advances in Information Technology Vol, 2017, 8(2): 3-9.

[95] Vural M S, Gök M. Criminal prediction using Naive Bayes theory[J]. Neural Computing and Applications, 2017, 28(9): 2581-2592.

[96] Mohan A, Dhir R, Hirashkar H, et al. Matching witness' account with mugshots for forensic applications[A]. 2018 Eleventh International Conference on Contemporary Computing (IC3)[C]. Piscataway: IEEE, 2018: 1-5.

[97] Burgess E W. Factors determining success or failure on parole[J]. The workings of the indeterminate sentence law and the parole system in Illinois, 1928: 221-234.

[98] Caulkins J, Cohen J, Gorr W, et al. Predicting criminal recidivism: A comparison of neural network models with statistical methods[J]. Journal of Criminal Justice, 1996, 24(3): 227-240.

[99] Schmidt P, Witte A D. Predicting Recidivism Using Survival Models[J]. Contemporary Sociology, 1989, 18(2): 245.

[100] Schmidt P, Witte A D. Predicting criminal recidivism using ‘split population’ survival time models[J]. Journal of Econometrics, 1989, 40(1): 141-159.

[101] Brodzinski J D, Crable E A, Scherer R F. Using artificial intelligence to model juvenile recidivism patterns[J]. Computers in Human Services, 1994, 10(4): 1-18.

[102] Palocsay S W, Wang P, Brookshire R G. Predicting criminal recidivism using neural networks[J]. Socio-Economic Planning Sciences, 2000, 34(4): 271-284.

[103] Wang P, Mathieu R, Ke J, et al. Predicting criminal recidivism with support vector machine[A]. 2010 International Conference on Management and Service Science[C]. Piscataway: IEEE, 2010: 1-9.

[104] Tollenaar N, Van der Heijden P G M. Which method predicts recidivism best?: a comparison of statistical, machine learning and data mining predictive models[J]. Journal of the Royal Statistical Society, 2013, 176(2): 565-584.

[105] Rossmo D K. Geographic profiling: Target patterns of serial murderers[D]. Theses (School of Criminology)/Simon Fraser University, 1995.

[106] Snook B, Taylor P J, Bennell C. Shortcuts to Geographic Profiling Suces: A Reply to Rosmo (2005)[J].Applied Cognitive Psychology, 2005, 19(5): 655-661.

[107] Levine N, CrimeStat I. A spatial statistics program for the analysis of crime incident locations[J]. National Institute of Justice, 2000, 25(2): 162-168.

[108] Shiode S, Shiode N, Block R, et al. Space-time characteristics of micro-scale crime occurrences: an application of a network-based space-time search window technique for crime incidents in Chicago[J]. International Journal of Geographical Information Science, 2015, 29(5-6): 697-719.

[109] Song C, Koren T, Wang P, et al. Modelling the scaling properties of human mobility[J]. Nature physics, 2010, 6(10): 818-823.

[110] 方嘉良, 李卫红. 犯罪嫌疑人落脚点预测模型改进研究——基于地理环境因素与CGT模型组合方法[C]. //2016中国地理信息科学理论与方法学术年会论文集. 2016: 1-8.

[111] 李卫红, 戴侃, 闻磊. 顾及地理因素的犯罪地理目标模型改进方法[J]. 测绘科学, 2015, 40(7): 86-91.

[112] Duan L, Ye X, Hu T, et al. Prediction of suspect location based on spatiotemporal semantics[J]. ISPRS International Journal of Geo-Information, 2017, 6(7): 185.

[113] 姜丁菊, 刘学文, 姜晓雪. 基于聚类的恐袭事件嫌疑人与可疑据点预测[J]. 重庆工商大学学报:自然科学版, 2019, 36(3): 6.

[114] Butt U M, Letchmunan S, Hassan F H, et al. Spatio-temporal crime hotspot detection and prediction: A systematic literature review[J]. IEEE Access, 2020, 8: 166553-166574.

[115] Liu H, Zhu X. Joint modeling of multiple crimes: A bayesian spatial approach[J]. ISPRS International Journal of Geo-Information, 2017, 6(1): 16-32.

[116] 柳林, 纪佳楷, 宋广文, 等. 基于犯罪空间分异和建成环境的公共场所侵财犯罪热点预测[J]. 地球信息科学学报, 2019, 21(11): 1655-1668.

[117] Wheeler A P, Steenbeek W. Mapping the risk terrain for crime using machine learning[J]. Journal of Quantitative Criminology, 2021, 37(2): 445-480.

[118] Alves L G A, Ribeiro H V, Rodrigues F A. Crime prediction through urban metrics and statistical learning[J]. Physica A: Statistical Mechanics and its Applications, 2018, 505: 435-443.

[119] Campedelli G M. Explainable machine learning for predicting homicide clearance in the United States[J]. Journal of criminal justice, 2022, 79: 101898.

[120] Sudjianto A, Nair S, Yuan M, et al. Statistical methods for fighting financial crimes[J]. Technometrics, 2010, 52(1): 5-19.

[121] Pickett K H S, Pickett J M. Financial crime investigation and control[M]. Hoboken: John Wiley & Sons, 2002.

[122] Mena J. Investigative data mining for security and criminal detection[M]. Butterworth-Heinemann, 2003.

[123] Serrano A, Costa J, Cardonha C, et al. Neural Network Predictor for Fraud Detection: A Study Case for the Federal Patrimony Department[A]. The Seventh International Conference on Forensic Computer Science[C]. 2012.

[124] Kiran S, Guru J, Kumar R, et al. Credit card fraud detection using Naïve Bayes model based and KNN classifier[J]. International Journal of Advance Research, Ideas and Innovations in Technoloy, 2018, 4(3): 44-47.

[125] Sudha C, Raj T N. Credit card fraud detection in internet using k-nearest neighbor algorithm[J]. Int. J. Comput. Sci, 2017, 5: 22-30.

[126] Abdelhamid D, Khaoula S, Atika O. Automatic bank fraud detection using support vector machines[A]. The International Conference on Computing Technology and Information Management (ICCTIM)[C]. Society of Digital Information and Wireless Communication, 2014: 10.

[127] Gaikwad J R, Deshmane A B, Somavanshi H V, et al. Credit card fraud detection using decision tree induction algorithm[J]. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2014, 4(6): 66-69.

[128] Sohony I, Pratap R, Nambiar U. Ensemble learning for credit card fraud detection[A]. Proceedings of the ACM India Joint International Conference on Data Science and Management of Data[C]. 2018: 289-294.

[129] Lim K S, Lee L H, Sim Y W. A review of machine learning algorithms for fraud detection in credit card transaction[J]. International Journal of Computer Science & Network Security, 2021, 21(9): 31-40.

[130] Arief H A, Saptawati G A P, Asnar Y D W. Fraud detection based-on data mining on Indonesian E-Procurement System (SPSE)[A]. 2016 International Conference on Data and Software Engineering (ICoDSE)[C]. IEEE, 2016: 1-6.

[131] Rabuzin K, Modrusan N. Prediction of Public Procurement Corruption Indices using Machine Learning Methods[A]. KMIS[C]. 2019: 333-340.

[132] Modrusan N, Rabuzin K, Mrsic L. Improving Public Sector Efficiency using Advanced Text Mining in the Procurement Process[A]. DATA[C]. 2020: 200-206.

[133] Rabuzin K, Modrušan N, Križanić S, et al. Process Mining in Public Procurement in Croatia[A]. Industrial Innovation in Digital Age[C]. Springer, Cham, 2022: 473-480.

[134] Decarolis F, Giorgiantonio C. Corruption red flags in public procurement: new evidence from Italian calls for tenders[J]. EPJ Data Science, 2022, 11(1): 16.

[135] Jayasree V, Balan R V S. Money laundering regulatory risk evaluation using bitmap index-based decision tree[J]. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2017, 23: 96-102.

[136] 张成虎, 赵小虎. 基于决策树算法的洗钱交易识别研究[J]. 武汉理工大学学报, 2008, 30(2): 154-156.

[137] 王超. 金融犯罪之人工智能预防路径研究——以贷款诈骗风险智能建模预测为分析路径[J]. 河南警察学院学报, 2019, 28(2): 27-33.

[138] Brar H S, Kumar G. Cybercrimes: A proposed taxonomy and challenges[J]. Journal of Computer Networks and Communications, 2018, 2018.

[139] Ch R, Gadekallu T R, Abidi M H, et al. Computational system to classify cyber crime offenses using machine learning[J]. Sustainability, 2020, 12(10): 4087.

[140] Abbass Z, Ali Z, Ali M, et al. A framework to predict social crime through twitter tweets by using machine learning[A]. 2020 IEEE 14th International Conference on Semantic Computing (ICSC)[C]. IEEE, 2020: 363-368.

[141] Deylami H M, Singh Y P. Adaboost and SVM based cybercrime detection and prevention model[J]. Artificial Intelligence Research, 2012, 1(2): 117-130.

[142] Bilen A, Özer A B. Cyber-attack method and perpetrator prediction using machine learning algorithms[J]. PeerJ Computer Science, 2021, 7: e475.

[143] Zhou S, Wang X, Yang Z. Monitoring and early warning of new cyber-telecom crime platform based on BERT migration learning[J]. China Communications, 2020, 17(3): 140-148.

[144] Kanoga S, Kawai N, Takaoka K. Deep neural networks for grid-based elusive crime prediction using a private dataset obtained from Japanese municipalities[A]. International Conference on Applied Human Factors and Ergonomics[C]. Cham: Springer, 2020: 105-112.

[145] Jin G, Wang Q, Zhao X, et al. Crime-GAN: A context-based sequence generative network for crime forecasting with adversarial loss[A]. 2019 IEEE International Conference on Big Data (Big Data)[C]. IEEE, 2019: 1460-1469.

[146] Li Z, Huang C, Xia L, et al. Spatial-temporal hypergraph self-supervised learning for crime prediction[A]. 2022 IEEE 38th international conference on data engineering (ICDE)[C]. IEEE, 2022: 2984-2996.

[147] Wang C, Lin Z, Yang X, et al. Hagen: Homophily-aware graph convolutional recurrent network for crime forecasting[A]. Proceedings of the AAAI Conference on Artificial Intelligence[C]. 2022, 36(4): 4193-4200.