[email protected]

工程学研究

Journal of Engineering Research

您当前位置:首页 > 精选文章

Journal of Engineering Research. 2025; 4: (7) ; 10.12208/j.jer.20250338 .

Design of an intelligent recognition and early warning system for underground coal mine personnel safety behavior
煤矿井下人员安全行为智能识别与预警系统设计

作者: 朱国岭 *

山西煤炭运销集团蒲县昊兴塬煤业有限公司 山西临汾

*通讯作者: 朱国岭,单位:山西煤炭运销集团蒲县昊兴塬煤业有限公司 山西临汾;

引用本文: 朱国岭 煤矿井下人员安全行为智能识别与预警系统设计[J]. 工程学研究, 2025; 4: (7) : 114-116.
Published: 2025/7/12 14:50:01

摘要

煤矿井下作业环境复杂多变,人员安全行为管控面临诸多挑战,传统监控方式存在响应滞后、识别精度不足等问题。为此,设计煤矿井下人员安全行为智能识别与预警系统,通过融合机器视觉、物联网和人工智能技术,实现对井下人员违规行为的实时监测、智能识别及主动预警。系统构建多维度感知网络,采集人员操作姿态、设备状态及环境参数,利用深度学习模型进行行为特征分析与风险评估,形成从数据采集到预警处置的闭环管理。实践表明,该系统可有效提升安全监管效率,降低事故发生率,为煤矿井下安全生产提供技术支撑。

关键词: 煤矿井下;安全行为;智能识别;预警系统;深度学习

Abstract

The underground coal mine environment is complex and ever-changing, posing significant challenges for personnel safety behavior management. Traditional monitoring methods suffer from issues such as delayed response and insufficient recognition accuracy. To address these challenges, this study designs an intelligent recognition and early warning system for underground coal mine personnel safety behavior. By integrating machine vision, IoT, and AI technologies, the system enables real-time monitoring, intelligent identification, and proactive alerts for personnel violations. The system establishes a multi-dimensional sensing network to collect operational postures, equipment status, and environmental parameters. Through deep learning models, it performs behavioral pattern analysis and risk assessment, forming a closed-loop management system from data collection to early warning and response. Practical applications demonstrate that this system effectively enhances safety supervision efficiency, reduces accident rates, and provides technical support for underground coal mine production safety.

Key words: Underground coal mine; Safety behavior; Intelligent recognition; Early warning system; Deep learning

参考文献 References

[1] 王冲,姚有利,侯艳文,等.基于YOLOv5s的煤矿井下人员不安全行为识别优化研究[J].陕西煤炭,2025,44(07): 180-184.

[2] 赵丽俊.基于智能算法的煤矿井下工作人员安全帽佩戴监控识别方法[J].自动化应用,2025,66(12):274-276+280

[3] 孙宁昊,郭钰,董国宇,等.煤矿井下作业人员不安全行为概念辨析研究[J].煤矿安全,2025,56(05):245-250.

[4] 郭孝园,朱美强,田军,等.基于深度学习的煤矿井下人员不安全行为检测与识别[J].工矿自动化,2025,51(03): 138-147.

[5] 孙宁昊,董国宇,李昕阳,等.基于HFACS的煤矿井下作业人员不安全行为致因组态研究——以机电事故和运输事故为例[J].安全,2025,46(02):57-63.

[6] 郝建营.煤矿井下人员不安全行为测度模型与应用研究[J].山东煤炭科技,2024,42(10):175-178+184.

[7] 公文礼.煤矿井下虹膜、定位卡多信息人员安全作业管控系统[J].电气防爆,2024,(03):40-42+46.

[8] 闫丽君.基于WSNs的煤矿井下人员安全定位研究[J].矿业装备,2024,(06):72-74.