Physical Science and Technical Research
Physical Science and Technical Research. 2024; 4: (2) ; 10.12208/j.pstr.20240011 .
总浏览量: 6
河北工业大学 天津
*通讯作者: 赵佳,单位:河北工业大学 天津;
量子计算是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式,其核心利用量子比特的叠加、纠缠和干涉等特性,在处理特定问题时理论上可实现对经典计算的指数级加速,有望为密码学、材料设计、药物研发和人工智能等领域带来颠覆性变革。本文系统阐述了量子计算机的物理基础与近年来的实现技术进展。量子计算的物理实现依赖于能有效编码和操控量子比特的物理体系,主要包括超导电路、光学体系、离子阱、半导体量子点以及金刚石氮空位色心等。近年来,各技术路线均取得了显著突破:超导量子计算在比特数量、门保真度及互联技术上快速推进,多个研究团队已成功研制包含数百个量子比特的处理器,并实现了量子计算优越性的演示;光量子计算凭借高斯玻色采样等路径亦成功验证了量子优越性,且集成光学芯片技术发展迅速;离子阱体系则持续保持着高精度逻辑操作的标杆;而固态自旋体系在室温操作与兼容传统半导体工艺方面展现出独特优势。然而,迈向大规模容错量子计算仍面临退相干、高精度量子操控、量子纠错规模化等核心挑战。未来,量子计算的发展需要多学科交叉融合,通过在硬件性能、软件算法和工程化集成上的持续创新,最终实现通用量子计算机的宏伟目标。
Quantum computing is a new computing mode that regulates quantum information units to compute according to the laws of quantum mechanics. Its core uses the superposition, entanglement and interference characteristics of qubits to theoretically accelerate classical computing exponentially when dealing with specific problems, which is expected to bring subversive changes to cryptography, material design, drug research and development and artificial intelligence. In this paper, the physical basis of quantum computer and the progress of realization technology in recent years are systematically described. The physical realization of quantum computing depends on physical systems that can effectively encode and manipulate qubits, including superconducting circuits, optical systems, ion traps, semiconductor quantum dots and diamond nitrogen vacancy color centers. In recent years, remarkable breakthroughs have been made in various technical routes: superconducting quantum computing has been rapidly advanced in bit quantity, gate fidelity and interconnection technology, and several research teams have successfully developed processors containing hundreds of qubits, and realized the demonstration of quantum computing superiority; Optical quantum computing has also successfully verified quantum superiority by virtue of Gaussian boson sampling and other paths, and integrated optical chip technology has developed rapidly; Ion trap system continues to maintain the benchmark of high-precision logic operation; The solid-state spin system shows unique advantages in room temperature operation and compatibility with traditional semiconductor processes. However, towards large-scale fault-tolerant quantum computing, there are still core challenges such as decoherence, high-precision quantum manipulation and quantum error correction scale. In the future, the development of quantum computing will require interdisciplinary integration, and through continuous innovation in hardware performance, software algorithms and engineering integration, the grand goal of general purpose quantum computers will be finally realized.
[1] 栾添,匡学衡,王维,等. 量子计算模拟物理系统进展[J].计算机科学与探索,2024,18(11):2787-2797.
[2] 金展鸿.面向大规模超导量子计算的极低温测控系统的研究[D].中国科学技术大学,2024.
[3] 邓宇皓.基于高斯玻色采样的量子计算优越性[D].中国科学技术大学,2023.
[4] 尤宜.基于金刚石NV色心的量子编码与量子计算[D].北京邮电大学,2023.
[5] 张英强.量子物理层保密通信高保真量子态的制备及传输[D].山西大学,2023.
[6] 温明杰.面向硅基量子计算机的低温模数转换器研究与实现[D].中国科学技术大学,2023.
[7] 张辉,基于大节点数网络精准排序的量子计算机程序编译系统.安徽省,合肥本源量子计算科技有限责任公司,2023-02-21.
[8] 张雪松. 量子计算机结构与发展路线分析[J].中国电子科学研究院学报,2023,18(02):176-182.
[9] 周文豪,王耀,翁文康,等. 集成光量子计算的研究进展[J].物理学报,2022,71(24):22-35.
[10] 朱庆玲.超导量子比特快速高保真度读取及在量子优越性上的应用[D].中国科学技术大学,2022.
[11] 尚云,开放系统量子计算理论及新型量子计算原理.北京市,中国科学院数学与系统科学研究院,2022-03-06.
[12] 付济邦.超导电子学-自旋电子学复合量子计算器件研究[D].国防科技大学,2021.
[13] 张诗豪,张向东,李绿周. 基于测量的量子计算研究进展[J].物理学报,2021,70(21):23-35.
[14] 陈希.基于核磁共振技术的量子计算和量子模拟实验研究[D].中国科学技术大学,2021.
[15] 胡语诚.面向量子芯片的量子计算与量子电路合成研究[D].南京大学,2021.
[16] 李斌.基于微波光子学和拓扑物态的超导量子计算研究[D].国防科技大学,2020.
[17] Rongyu Wei,;Jun Li,;Weihao Wang,;and Qinghua Guo.Evaluation on quantum illumination radar with quantum limited amplification[J]. Optics Express.2023.
[18] Durr-E-Shahwar;Muhammad Imran;Ahmed B. Altamimi;Wilayat Khan;Shariq Hussain;Mohammad Alsaffar.Quantum Cryptography for Future Networks Security: A Systematic Review[J]. IEEE Access.2024.
[19] Tariq M. Khan;Antonio Robles-Kelly.Machine Learning: Quantum vs Classical[J]. IEEE Access.2020.
[20] Xi Chen, Peng Wang, Jingzhou Li, Hongyu Yang, Jiahao Zhang, QiuJie Yang, Hongxing Dong, Hongxing Qi.Improving the data rate for long distance visible light communication using h-BN/CdZnSeS@ZnSeS quantum dot composite[J]. Optics express.2023.
[21] Duan Huang,;YanTing Xiong,;Zhuangzhuang Xing,;and Qi Zhang.Implementation of energy-efficient convolutional neural networks based on kernel-pruned silicon photonics[J]. Optics Express.2023.
[22] Anand Choudhary;Ajay Wasan.Cracking the Curious Case of the Cascade Protocol[J]. IEEE Access.2023.
[23] Sethuraman Panchanathan.Envisioning the future of the AI research ecosystem[J]. PNAS nexus.2024.
[24] Kaifei Tang,;Xiang Ji,;Jiahui Liu,;Jiantao Wang,;Yu Xin,;Jizhou Liu,;Guihan Wu,;Qi Sun,;Zhaobang Zeng,;Rulei Xiao,;Nicholas Madamopoulos,;Xiangfei Chen,and Wei Jiang.Photonic convolutional neural network with robustness against wavelength deviations[J]. Optics Express.2023.
[25] Weiwei Liu,;Changjun Min,;and Yuquan Zhang.Selective plasmonic trapping of nano-particles by Archimedes metalens[J]. Optics Express.2023.
[26] Guzhi Bao,;Jun Chen,;Ruiqi Wang,;L. Q. Chen,;and Weiping Zhang.SERF-like magnetometry in room-temperature environment[J]. Optics Express.2023.
[27] Qing Wu,;Gang Zhao,;Haibin Wu,;and Meng Zhang.Open-ended exploration of ultrashort pulse lasers: an innovative design strategy for devices based on 2D materials[J]. Photonics Research.2023.