Physical Science and Technical Research
Physical Science and Technical Research. 2025; 5: (1) ; 10.12208/j.pstr.20250004 .
总浏览量: 326
仲恺农业工程学院自动化学院 广东广州
*通讯作者: 王顺,单位:仲恺农业工程学院自动化学院 广东广州;
本文通过精确数值求解全维含时薛定谔方程和使用Tóth等人提出的三态理论模型,研究了锂原子在强激光脉冲作用下的电离过程中的拉比振荡现象。全维方程的计算可以产生明显的单光子拉比振荡,并持续数个周期,证明了我们的全维计算方法的精确可靠。三态模型的计算从两个不同的角度实现了双光子拉比振荡。但是,这种双光子拉比振荡在全维量子计算中无法复现,表明此时三态模型是失效的,Tóth等人提出的利用光电子能谱中的动态干涉图样探测电离过程中的拉比振荡的方案也是不可行的。
In this Letter, Rabi oscillations in the ionization of lithium atoms subject to strong laser pulses are studied by accurately numerically solving the full-dimensional time-dependent Schrödinger equation and by using the three-state theoretical model Tóth et al. proposed. Calculations of the full equation produce pronounced single-photon Rabi oscillations, which last several cycles, demonstrating that our method for the full-dimensional calculations is precise and reliable. Calculations of the three-state model realize the double-photon Rabi oscillations from two distinct perspectives. However, this type of double-photon Rabi oscillations cannot be reproduced in the full-dimensional quantum calculations, proving that the three-state model is invalid here, and that the scheme devised by Tóth et al. for probing the Rabi oscillations in the ionization through the dynamic interference patterns in the photoelectron energy spectra is infeasible.
[1] T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[2] F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
[3] C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 5, 335 (2009).
[4] M. Chini, X. Wang, Y. Cheng, H. Wang, Y. Wu, E. Cunningham, P.-C. Li, J. Heslar, D. A. Telnov, S.-I. Chu, and Z. Chang, Nat. Photon. 8, 437 (2014).
[5] P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, Phys. Rev. Lett. 42, 1127 (1979).
[6] D. A. Tumakov, D. A. Telnov, G. Plunien, and V. M. Shabaev, Phys. Rev. A 100, 023407 (2019).
[7] N. B. Delone and V. P. Krainov, Phys. Usp. 42, 669 (1999).
[8] R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M. E. Geusic, Phys. Rev. Lett. 59, 1092 (1987).
[9] P. Ludowise, M. Blackwell, and Y. Chen, Chem. Phys. Lett. 258, 530 (1996).
[10] M. Fushitani, C.-N. Liu, A. Matsuda, T. Endo, Y. Toida, M. Nagasono, T. Togashi, M. Yabashi, T. Ishikawa, Y. Hikosaka, T. Morishita, and A. Hishikawa, Nat. Photon. 10, 102 (2016).
[11] M. Nakano, T. Otobe, and R. Itakura, Phys. Rev. A 95, 063404 (2017).
[12] J. Zhu, Phys. Rev. A 103, 013113 (2021).
[13] M. Wickenhauser, X. M. Tong, and C. D. Lin, Phys. Rev. A 73, 011401(R) (2006).
[14] P. V. Demekhin and L. S. Cederbaum, Phys. Rev. Lett. 108, 253001 (2012).
[15] P. V. Demekhin and L. S. Cederbaum, Phys. Rev. A 88, 043414 (2013).
[16] M. Baghery, U. Saalmann, and J. M. Rost, Phys. Rev. Lett. 118, 143202 (2017).
[17] A. Tóth, S. Borbély, and A. Csehi, Phys. Rev. A 108, L061101 (2023).
[18] I. I. Rabi, Phys. Rev. 51, 652 (1937).
[19] C. Kiehl, D. Wagner et al., Phys. Rev. Research 5, L012002 (2023)
[20] X. T. Nguyen, K. Winte, et al., Nature Communications 14, 1047 (2023).
[21] A. A. Elarabi and A. Csehi, Phys. Rev. A 111, 033107 (2025).
[22] A. Tóth and A. Csehi, J. Phys. B: At. Mol. Opt. Phys. 54, 035005 (2021).
[23] M. Klapisch, Comput. Phys. Commun. 2, 239 (1971).
[24] S. Magnier, M. Aubert-Frécon, J. Hanssen, and C. L. Sech, J. Phys. B 32, 5639 (1999).
[25] T. N. Rescigno and C. W. McCurdy, Phys. Rev. A 62, 032706 (2000).
[26] B. I. Schneider and L. A. Collins, J. Non-Cryst. Solids 351, 1551 (2005).
[27] M. J. Rayson, Phys. Rev. E 76, 026704 (2007).
[28] X. M. Tong, K. Hino, and N. Toshima, Phys. Rev. A 74, 031405(R) (2006).
[29] K. Nasiri Avanaki, D. A. Telnov, and S. I. Chu, Phys. Rev. A 94, 053410 (2016).