International Journal of Mechanical Engineering
International Journal of Mechanical Engineering. 2025; 4: (2) ; 10.12208/j.ijme.20250052 .
总浏览量: 64
常州德尔松压力容器有限公司 江苏常州
*通讯作者: 王亚军,单位:常州德尔松压力容器有限公司 江苏常州;
在智能制造快速发展的背景下,传统检验规程编制方式已无法满足复杂、多变、高速生产环境的要求。本文聚焦于检验规程自动生成技术的研究,提出构建基于语义建模与工艺知识融合的自动生成框架,以实现检验项目、检验标准与工艺路径的智能匹配。通过引入知识图谱、规则推理及AI辅助建模手段,提高了规程生成的准确性与效率。在实际制造场景中的验证结果表明,该方法能有效提升质量控制的智能化水平,降低人工干预,促进制造过程与检验过程的深度融合,为智能工厂实现自适应质量管理提供了重要支撑。
Against the backdrop of the rapid development of smart manufacturing, traditional methods for formulating inspection procedures can no longer meet the requirements of complex, changeable, and high-speed production environments. This paper focuses on the research of automatic generation technology for inspection procedures and proposes the construction of an automatic generation framework based on the integration of semantic modeling and process knowledge, aiming to achieve intelligent matching of inspection items, inspection standards, and process routes. By introducing knowledge graphs, rule reasoning, and AI-aided modeling methods, the accuracy and efficiency of procedure generation are improved. Verification results in actual manufacturing scenarios show that this method can effectively enhance the intelligence level of quality control, reduce manual intervention, promote the in-depth integration of manufacturing processes and inspection processes, and provide important support for smart factories to realize adaptive quality management.
[1] 牛凌.智能制造赋能产业发展跑出加速度[N].西安日报,2025-08-19(004).
[2] 张杰,胡浩然. 银行金融科技与民营企业智能制造[J/OL].消费经济,1-20[2025-08-19].
[3] 周研,张精. 智能制造专业群建设的思考[J].时代汽车,2025,(18):81-83.
[4] 罗明诚.面向智能制造的金属产品质量检验流程优化与系统开发[C]//中国高校校办产业协会终身学习专业委员会.第四届教育信息技术创新与发展学术研讨会论文集.浙江明铖金属科技股份有限公司;,2025:375-377.
[5] 路文玲,胡恩华,单红梅. 数字创新下企业—工会耦合关系对员工数字化变革支持行为的影响研究——基于智能制造企业的实证检验[J].科学学与科学技术管理,2025, 46(05):167-180.
[6] 广船国际“智能薄板车间检验优化示范点”挂牌[J].中国船检,2024,(12):9.
[7] 仲维健. 船舶智能制造流水线质量检验数据采集技术分析[J].船舶物资与市场,2022,30(11):59-61.
[8] 王鹏宇,郭威,刘坚. 船舶智能制造流水线质量检验数据采集技术应用[J].造船技术,2021,49(04):89-92.