International Journal of Mechanical Engineering
International Journal of Mechanical Engineering. 2025; 4: (2) ; 10.12208/j.ijme.20250051 .
总浏览量: 57
东莞保康电子科技有限公司 广东东莞
*通讯作者: 罗喜庆,单位:东莞保康电子科技有限公司 广东东莞;
本文提出一种基于数字信号处理的轴承复合故障特征提取方法,通过对轴承振动信号进行多尺度时频分析与特征分解,实现复合故障特征的有效分离与识别。方法利用小波包分解、经验模态分解及瞬时频率提取技术,强化信号中微弱故障特征的表达,并结合统计特征量进行特征优化,提高复合故障诊断的准确性和鲁棒性。仿真及实验结果表明,该方法在复杂运行环境下能够稳定捕捉多类型故障信息,为轴承状态监测提供可靠数据支撑。
This paper proposes a digital signal processing-based method for composite fault feature extraction in bearings. By conducting multi-scale time-frequency analysis and feature decomposition on bearing vibration signals, the method achieves effective separation and identification of composite fault characteristics. Utilizing wavelet packet decomposition, empirical mode decomposition, and instantaneous frequency extraction techniques, the approach enhances the representation of weak fault features in signals. Combined with statistical feature quantization, it optimizes features to improve diagnostic accuracy and robustness. Simulation and experimental results demonstrate that this method can stably capture multiple types of fault information under complex operating conditions, providing reliable data support for bearing condition monitoring.
[1] 王永富,全继海,陈晨,等. 船用发动机低速重载条件下的滑动轴承摩擦故障实例分析[J].船舶与海洋工程,2025,41(04):46-49+74.
[2] 梅梓欣,朱汉华,彭康,等. 考虑磨损与复杂工况下船舶艉轴承润滑特性分析[J/OL].润滑与密封,1-7[2025-08-19].
[3] 苑宇,王硕,张明旺. 复合多稳态随机共振轴承微弱故障信号特征提取研究[J/OL].大连交通大学学报,1-11[2025-08-19].
[4] 包金龙,郑近德,潘海洋,等. 基于复合多尺度二维时频排列熵的滚动轴承故障诊断[J].噪声与振动控制,2025, 45(04):143-149.
[5] 郭开泰,吴庆森,田春娜,等. 数字信号处理教学系统性辅助工具设计与开发[J].长江信息通信,2025,38(07):16-20
[6] 陈立涛. 数字信号处理在电气自动化中的应用[J].信息记录材料,2025,26(07):110-112.
[7] 顾恩睿. 基于数字信号处理技术的电子信息工程应用分析[J].数字技术与应用,2025,43(06):146-148.
[8] 孙嘉,李艳凤,陈后金,等. 科研导向的“数字信号处理”课程实验设计与探索[J].教育教学论坛,2025,(26):93-96.