International Journal of Mechanical Engineering
International Journal of Mechanical Engineering. 2025; 4: (2) ; 10.12208/j.ijme.20250046 .
总浏览量: 65
临沂宏盛铸业有限公司 山东临沂
*通讯作者: 付向华,单位:临沂宏盛铸业有限公司 山东临沂;
本文探讨了机械制造知识图谱构建与智能工艺决策应用的关键问题。首先分析了知识图谱构建过程中面临的挑战,包括数据来源复杂、知识抽取难度大、实体与关系识别不准确以及知识动态更新等问题。接着提出了知识图谱在智能工艺决策中的应用策略,涵盖工艺方案优化、生产流程优化、质量控制和设备故障预测等环节。最后通过实际案例展示了知识图谱与智能决策深度融合的实践效果,验证了其在提升生产效率、降低成本和提高产品质量方面的显著优势。结果表明,知识图谱与智能决策的结合为机械制造智能化转型提供了有力支持。
This paper explores the key issues in the construction of mechanical manufacturing knowledge graphs and their application in intelligent process decision-making. It first analyzes the challenges faced in the construction of knowledge graphs, including complex data sources, difficulties in knowledge extraction, inaccurate identification of entities and relationships, and dynamic knowledge updates. Subsequently, it proposes application strategies for knowledge graphs in intelligent process decision-making, covering process optimization, production flow optimization, quality control, and equipment failure prediction. Finally, through practical cases, it demonstrates the significant advantages of the deep integration of knowledge graphs and intelligent decision-making in improving production efficiency, reducing costs, and enhancing product quality. The results show that the combination of knowledge graphs and intelligent decision-making provides strong support for the intelligent transformation of mechanical manufacturing.
[1] 黄晓萍,陆晨芳,赵一楠.机械设计与制造资源库的知识图谱构建与智能化应用[J].造纸装备及材料,2024,53(08): 186-188.
[2] 刘佳伟,王军生,金鹏,等.面向智能制造的知识图谱驱动设备故障诊断方法研究[C]//中国金属学会.第十四届中国钢铁年会论文集—14.冶金自动化与智能化.鞍钢集团自动化有限公司;鞍钢集团北京研究院有限公司;辽宁科技大学电子与信息工程学院;,2023:54-64.
[3] 英璐,王强.基于智能制造的工艺决策支持系统研究[J].阀门,2024,(07):870-872.
[4] 秦先明.机械设计制造中人工智能技术的融合与应用实践研究[J].专用汽车,2024,(11):103-105.
[5] 张卫丰.先进制造技术与机械制造工艺的优化措施[J].大众标准化,2025,(14):47-49.
[6] 黄小华,郭芳芳.产教深度融合下“机械制造技术基础”课程优化建设分析[J].时代汽车,2024,(20):50-52.
[7] 韩恩宽,刘博雅.知识图谱技术在机电一体化实验系统中的应用研究[J].现代制造技术与装备,2025,61(07):168-170.
[8] 刘凡,陈少杰,涂璐,等.基于知识图谱技术的智能监管方法研究[J].中国口岸科学技术,2025,7(07):16-21.