Advances in International Computer Science
Advances in International Computer Science. 2025; 5: (2) ; 10.12208/j.aics.20250017 .
总浏览量: 72
七彩宝(苏州)科技有限公司 江苏苏州
*通讯作者: 薛志臣,单位:七彩宝(苏州)科技有限公司 江苏苏州;
旅行商问题(TSP)作为经典的组合优化难题,广泛应用于路径规划与物流调度等领域。传统算法在求解大规模TSP时效率较低,难以满足实际需求。本文围绕遗传算法在TSP问题中的应用展开研究,提出一种基于改进遗传算子的求解策略,通过优化交叉、变异机制和引入局部搜索策略,提升算法收敛速度与解的质量。实验结果表明,该方法在多个标准测试数据集中均取得较优路径长度,验证了其有效性与稳定性,为复杂优化问题提供了新的解决思路。
As a classic combinatorial optimization problem, the Traveling Salesman Problem (TSP) is widely applied in fields such as path planning and logistics scheduling. Traditional algorithms exhibit low efficiency in solving large-scale TSP, making it difficult to meet practical needs. This paper focuses on the application of genetic algorithms in TSP, proposing a solution strategy based on improved genetic operators. By optimizing crossover and mutation mechanisms and introducing a local search strategy, the algorithm's convergence speed and solution quality are enhanced. Experimental results show that this method achieves superior path lengths in multiple standard test datasets, verifying its effectiveness and stability. It provides new solutions for complex optimization problems.
[1] 黄傲,李敏,曾祥光,等.基于PPO的自适应杂交遗传算法求解旅行商问题[J].计算机科学,2025,52(S1):224-229.
[2] 王璞,刘宏杰,周永录.基于改进人工鱼群算法求解旅行商问题及多点路径规划[J].科学技术与工程,2024,24(35): 15090-15097.
[3] 周桃静,许家昌.细胞型膜进化算法求解旅行商问题[J].宁夏师范学院学报,2024,45(07):72-83.
[4] 张钰.阿基米德优化算法及其在旅行商问题中的应用[D].西安理工大学,2024.
[5] 李香薏,谭代伦.基于策略池-扩张机制的改进遗传算法求解旅行商问题[J].六盘水师范学院学报,2024, 36(03): 55-64.
[6] 边锦华,张晓霞.求解TSP问题的一种变领域遗传算法[J].福建电脑,2023,39(12):24-27.
[7] 赵涛,叶志伟,宗欣露,等.求解旅行商问题的改进k-opt遗传算法[J].湖北工业大学学报,2023,38(05):75-81.
[8] 王昀昊.容量着色旅行商问题及其求解算法研究[D].东南大学,2023.