[email protected]

电气工程与自动化

Journal of Electrical Engineering and Automation

您当前位置:首页 > 精选文章

Journal of Electrical Engineering and Automation. 2025; 4: (4) ; 10.12208/j.jeea.20250125 .

The application of metaverse technology in the virtual maintenance training system for electrical equipment
元宇宙技术在电气设备虚拟维修培训系统中的应用

作者: 武焕有 *

山西朋通建设项目管理有限公司 山西太原

*通讯作者: 武焕有,单位:山西朋通建设项目管理有限公司 山西太原;

引用本文: 武焕有 元宇宙技术在电气设备虚拟维修培训系统中的应用[J]. 电气工程与自动化, 2025; 4: (4) : 89-92.
Published: 2025/4/15 10:30:26

摘要

随着电气设备智能化与复杂化程度提升,传统维修培训模式已难以满足需求。元宇宙技术凭借沉浸交互、虚拟仿真等特性,为电气设备维修培训带来新方向。元宇宙技术在电气设备虚拟维修培训系统中的应用,构建出高度逼真的虚拟场景,实现设备全生命周期模拟,支持多人协同操作与实时反馈。通过虚拟实训环境,维修人员可在无风险情境下掌握复杂维修技能,大幅提升培训效率与效果。依托云计算与大数据技术,实现培训数据智能分析与个性化教学。元宇宙技术的应用,有效解决传统培训的局限性,推动电气设备维修培训向智能化、高效化发展。

关键词: 元宇宙技术;电气设备;虚拟维修;培训系统;智能教学

Abstract

As electrical equipment becomes more intelligent and complex, traditional maintenance training methods are no longer sufficient to meet the demands. Metaverse technology, with its immersive interaction and virtual simulation capabilities, offers a new direction for electrical equipment maintenance training. By creating highly realistic virtual environments, the application of metaverse technology in the virtual maintenance training system for electrical equipment enables full lifecycle simulation of equipment and supports collaborative operations and real-time feedback among multiple participants. Through this virtual training environment, maintenance personnel can acquire complex maintenance skills in a risk-free setting, significantly enhancing training efficiency and effectiveness. Additionally, leveraging cloud computing and big data technologies, the system facilitates intelligent analysis of training data and personalized teaching. The integration of metaverse technology effectively addresses the limitations of traditional training methods, driving the advancement of electrical equipment maintenance training towards greater intelligence and efficiency.

Key words: Metaverse technology; Electrical equipment; Virtual maintenance; Training system; Intelligent teaching

参考文献 References

[1] 罗志华.新能源汽车高压电气设备维修与安全防护[J].汽车电器,2025,(05):170-172.

[2] 苑宁,王庆安,张祥雷.110 kV变电设备维修策略优化研究[J].自动化应用,2025,66(09):171-174.

[3] 彭焜鹿,周凤霞,梁伦.《汽车电气设备构造与维修》课程思政教学实践与探索[J].时代汽车,2025,(09):137-139 +161.

[4] 周通玮.汽车电气设备构造与维修课程思政的教学方法探索[J].汽车画刊,2025,(04):203-205.

[5] 李顺章,赵奇.船舶电气设备的管理和维修保养措施探析[J].中国设备工程,2025,(08):65-68.

[6] 戈狄,渠俊锋,周成龙,等.新型低压电网电气设备的柔性负荷调控带电维修技术探析[J].家电维修,2025,(04): 125-127.

[7] 樊葡萄.面向电子故障诊断与维修的联合优化数学模型研究[J].自动化与仪器仪表,2025,(03):76-80.

[8] 宋路生.智能工程机械电气设备故障的维修方法及价值探究[J].中国金属通报,2025,(03):121-123.