[email protected]

工程学研究

Journal of Engineering Research

您当前位置:首页 > 精选文章

Journal of Engineering Research. 2025; 4: (6) ; 10.12208/j.jer.20250293 .

Optimization of the chlorinated paraffin liquid chlorine gasification system based on cold water (10℃) -hot water cascade heat exchange
基于冷水(10℃)-热水梯级换热的氯化石蜡液氯气化系统设计优化

作者: 黄小刚 *

江西塑星材料有限公司 江西九江

*通讯作者: 黄小刚,单位:江西塑星材料有限公司 江西九江;

引用本文: 黄小刚 基于冷水(10℃)-热水梯级换热的氯化石蜡液氯气化系统设计优化[J]. 工程学研究, 2025; 4: (6) : 147-149.
Published: 2025/6/11 11:15:43

摘要

氯化石蜡生产中液氯气化能耗高、效率低。基于冷水(10℃)- 热水梯级换热的氯化石蜡液氯气化系统设计优化,通过创新换热器结构与流程配置,实现热量高效回收与利用。冷水与热水梯级换热,使冷水吸收液氯气化潜热预升温,升温后冷水再与热水进行二次换热,提升热水温度用于后续工艺,降低外部热源消耗。经优化,系统热效率显著提高,能耗大幅降低,液氯气化稳定性增强,有效解决传统系统存在的问题,为氯化石蜡生产节能降耗提供新途径,对推动行业绿色发展具有重要意义。

关键词: 梯级换热;液氯气化;氯化石蜡;系统优化;节能降耗

Abstract

In the production of chlorinated paraffin, liquid chlorine gasification is characterized by high energy consumption and low efficiency. This study optimizes the design of a chlorinated paraffin liquid chlorine gasification system using cold water (10℃) -hot water cascade heat exchange. By innovating the heat exchanger structure and process configuration, the system achieves efficient heat recovery and utilization. Cold water absorbs the latent heat required for liquid chlorine gasification through cascade heat exchange with hot water, pre-heating it. After pre-heating, the cold water undergoes secondary heat exchange with hot water, increasing the temperature of the hot water for subsequent processes and reducing the consumption of external heat sources. The optimization significantly improves the system's thermal efficiency, reduces energy consumption, enhances the stability of liquid chlorine gasification, effectively addresses issues in traditional systems, and provides a new approach to energy conservation and emission reduction in chlorinated paraffin production. This innovation is of great significance for promoting the green development of the industry.

Key words: Cascade heat exchange; Liquid chlorine gasification; Chlorinated paraffin; System optimization; Energy conservation and emission reduction

参考文献 References

[1] 闫秀英,夏宇.太阳能-空气源热泵热水系统新型组合优化设计[J].分布式能源,2024,9(04):33-42.

[2] 李伟,邢滕,章明友,等.改造项目屋面太阳能热水系统热源优化设计[J].给水排水,2024,60(08):109-111.

[3] 王镜明,杨雪.太阳能联合空气源热泵热水系统优化设计[J].煤气与热力,2024,44(04):33-35.

[4] 钟桦,封昕,赵晓,等.华龙一号非核级冷水系统设计优化研究[J].暖通空调,2023,53(S2):305-307.

[5] 封昕,钟桦,刘占盛,等.华龙机型核岛冷水系统设计优化研究[J].暖通空调,2023,53(S1):87-90.

[6] 孙亮,张昆.基于PIPE-FLO的低能耗冷水系统设计方法研究[J].暖通空调,2023,53(04):67-75+142

[7] 赵晓,孙兰飞,魏川铖,等.华龙一号电气厂房冷水系统设计优化研究[J].暖通空调,2021,51(03):30-32.

[8] 赵晓,孙兰飞,陈之华,等.某四代堆型重要用户冷水系统设计优化研究[J].暖通空调,2020,50(S2):173-175.